首页> 外文期刊>Environmental Modelling & Software >Data-based Mechanistic Modelling Of Stochastic Rainfall-flow Processes By State Dependent Parameter Estimation
【24h】

Data-based Mechanistic Modelling Of Stochastic Rainfall-flow Processes By State Dependent Parameter Estimation

机译:基于状态的参数估计的基于数据的随机降雨流过程力学模型

获取原文
获取原文并翻译 | 示例

摘要

Due to the inherent nonlinearity in the process of transformation of rainfall into river flow, a simple direct input-output transfer function (TF) model may not sufficiently capture the catchment's hydro-logical dynamics. This paper presents an application of state dependent parameter (SDP) models for nonlinear, stochastic dynamic system to identify the location and form of the nonlinearity in the rainfall-effective rainfall dynamics. The objective was to develop an effective rainfall input time series that was then used to improve the performance of an originally developed direct input-output TF model of daily rainfall-flow relationship. The CAPTAIN Toolbox in the MATLAB~R environment was used in the model identification in which the recursive filtering and smoothing procedures formulated within a stochastic state space setting were applied to the time series data in order to identify the location and form of nonlinearities within a generic TF model. The nonparametric estimation as well as the parametric optimisation of the resulting nonlinear models was done using the Curve Fitting Toolbox in MATLAB~R. The results showed an improved and more parsimonious TF model. The model improved from explaining only 13% of the data to 56% presenting an improvement of 43% in the model fit. The study demonstrates that simple stochastic but robust tools can be successfully applied to develop and improve applicable hydrological models.
机译:由于降雨转化为河流流量过程中存在固有的非线性,因此简单的直接输入输出传递函数(TF)模型可能无法充分捕获流域的水文动态。本文提出了状态相关参数(SDP)模型在非线性随机动态系统中的应用,以识别降雨有效降雨动力学中非线性的位置和形式。目的是开发一个有效的降雨输入时间序列,然后将其用于改善最初开发的每日降雨-流量关系的直接投入-产出TF模型的性能。在模型识别中使用了MATLAB〜R环境中的CAPTAIN工具箱,在模型识别中,将随机状态空间设置中制定的递归滤波和平滑过程应用于时间序列数据,以识别泛型中非线性的位置和形式TF模型。使用MATLAB〜R中的曲线拟合工具箱对所得非线性模型进行了非参数估计以及参数优化。结果显示了改进的和更简约的TF模型。该模型从仅解释13%的数据改进为56%,表明模型拟合度提高了43%。研究表明,简单的随机但可靠的工具可以成功地用于开发和改进适用的水文模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号