首页> 外文期刊>Engineering with Computers >A neuro-simulated annealing approach to the inverse kinematics solution of redundant robotic manipulators
【24h】

A neuro-simulated annealing approach to the inverse kinematics solution of redundant robotic manipulators

机译:冗余机器人操纵器逆运动学解决方案的神经模拟退火方法

获取原文
获取原文并翻译 | 示例

摘要

The neural-network-based inverse kinematics solution is one of the recent topics in the robotics because of the fact that many traditional inverse kinematics problem solutions such as geometric, iterative and algebraic are inadequate for redundant robots. However, since the neural networks work with an acceptable error, the error at the end of inverse kinematics learning should be minimized. In this study, simulated annealing (SA) algorithm was used together with the neural-network-based inverse kinematics problem solution robots to minimize the error at the end effector. The solution method is applied to Stanford and Puma 560 six-joint robot models to show the efficiency. The proposed algorithm combines the characteristics of neural network and an optimization technique to obtain the best solution for the critical robotic applications. Three Elman neural networks were trained using separate training sets and different parameters, since one of them can give better results than the others can. The best result is selected within three neural network results by computing the end effector error via direct kinematics equation of the robotic manipulator. The decimal part of the neural network result was improved up to 10 digits using simulated annealing algorithm. The obtained best solution is given to the simulated annealing algorithm to find the best-fitting 10 digits for the decimal part of the solution. The end effector error was reduced significantly.
机译:由于许多传统的逆运动学问题解决方案(例如几何,迭代和代数)都不适合冗余机器人,因此基于神经网络的逆运动学解决方案是机器人学中的最新主题之一。但是,由于神经网络会以可接受的误差工作,因此应将逆运动学学习结束时的误差降至最低。在这项研究中,模拟退火(SA)算法与基于神经网络的逆运动学问题解决机器人一起使用,以最小化末端执行器的误差。该解决方案方法应用于Stanford和Puma 560六关节机器人模型以显示效率。所提出的算法结合了神经网络的特征和优化技术,从而为关键机器人应用获得了最佳解决方案。使用单独的训练集和不同的参数对三个Elman神经网络进行了训练,因为其中一个可以比其他人提供更好的结果。通过机器人操纵器的直接运动学方程计算末端执行器误差,可以在三个神经网络结果中选择最佳结果。使用模拟退火算法,将神经网络结果的小数部分提高了10位。将获得的最佳解决方案提供给模拟退火算法,以找到该解决方案的小数部分最适合的10位数字。末端执行器误差显着降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号