首页> 外文期刊>Engineering with Computers >Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams
【24h】

Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams

机译:通过自适应集合加权结合机器学习模型,以预测钢筋混凝土深梁剪切容量

获取原文
获取原文并翻译 | 示例

摘要

This study presents a novel artificial intelligence (AI) technique based on two support vector machine (SVM) models and symbiotic organisms search (SOS) algorithm, called "optimized support vector machines with adaptive ensemble weighting" (OSVM-AEW), to predict the shear capacity of reinforced-concrete (RC) deep beams. This ensemble learning-based system combines two supervised learning models-the support vector machine (SVM) and least-squares support vector machine (LS-SVM)-with the SOS optimization algorithm as the optimizer. In OSVM-AEW, SOS is integrated to simultaneously select the optimal parameters of SVM and LS-SVM, and control the coordination process of the learning outputs. Experimental results show that OSVM-AEW achieves the greatest evaluation criteria for coefficient of correlation (0.9620), coefficient of determination (0.9254), mean absolute error (0.3854 MPa), mean absolute percentage error (7.68%), and root-mean-squared error (0.5265 MPa). This paper demonstrates the successful application of OSVM-AEW as an efficient tool for helping structural engineers in the RC deep beams design process.
机译:本研究提出了一种基于两个支持向量机(SVM)模型和共生生物搜索(SOS)算法的新型人工智能(AI)技术,称为“具有自适应集合加权”(OSVM -EEW)的“优化支持向量机”(OSVM-AW),以预测钢筋混凝土(RC)深梁的剪切容量。该集合基于学习的系统组合了两个监督学习模型 - 支持向量机(SVM)和最小二乘支持向量机(LS-SVM) - 以及SOS优化算法作为优化器。在OSVM -EEW中,SOS被集成以同时选择SVM和LS-SVM的最佳参数,并控制学习输出的协调过程。实验结果表明,OSVM-AEV实现了相关系数(0.9620),测定系数(0.9254),平均绝对误差(0.3854MPa),平均百分比误差(7.68%)和根均平方(7.68%)的最大评价标准错误(0.5265 MPa)。本文演示了OSVM-AEV作为一种有效的工具,以帮助RC深度梁设计过程中的结构工程师的高效工具。

著录项

  • 来源
    《Engineering with Computers》 |2020年第3期|1135-1153|共19页
  • 作者单位

    Department of Civil Engineering Petra Christian University Jalan Siwalankerto 121-131 Surabaya 60236 Indonesia;

    Department of Civil and Construction Engineering National Taiwan University of Science and Technology #43 Sec. 4 Keelung Rd Taipei 106 Taiwan ROC;

    Department of Civil and Construction Engineering National Taiwan University of Science and Technology #43 Sec. 4 Keelung Rd Taipei 106 Taiwan ROC;

    Department of Construction Engineering and Management Ho Chi Minh City University of Technology Vietnam National University Ho Chi Minh City (VNU-HCM) 268 Ly Thuong Kiet St. Dist. 10 Ho Chi Minh City Viet Nam;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shear strength; RC deep beams; Ensemble model; Symbiotic organisms search; Support vector machine;

    机译:剪切力量;RC深梁;合奏模型;共生生物搜索;支持矢量机器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号