首页> 外文期刊>Engineering with Computers >On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis
【24h】

On the numerical solution of two-dimensional integral equations using a meshless local discrete Galerkin scheme with error analysis

机译:用误差分析使用无网局部离散Galerkin方案的二维积分方程的数值解

获取原文
获取原文并翻译 | 示例

摘要

This investigation presents a simple and effective method for numerically solving two-dimensional Fredholm integral equations of the second kind on non-rectangular domains. The general framework of the current scheme is based on the Galerkin method together with moving least squares (MLS) technique constructed on scattered points in which all integrals are approximated by a suitable quadrature formula. The MLS approach estimates an unknown function utilizing a locally weighted least square polynomial fitting. The method does not require any cell structures, so it is meshless and consequently independent of the geometry of the domain. The algorithm of the presented scheme is attractive and easy to implement on computers. Furthermore, the error bound and the convergence rate of the presented method are obtained. Illustrative examples clearly show the reliability and the efficiency of the new method and confirm the theoretical error estimates provided in the current paper.
机译:本研究介绍了在非矩形域的二维Fredholm积分方程数值求解的二维Fredholm整体方程的简单有效方法。当前方案的一般框架基于Galerkin方法以及在散射点构造的移动最小二乘(MLS)技术,其中所有积分由合适的正交公式近似。 MLS方法估计利用局部加权最小二乘多项式配件的未知功能。该方法不需要任何单元结构,因此它是无比的并且因此独立于域的几何形状。呈现方案的算法在计算机上具有吸引力且易于实现。此外,获得了所呈现的误差和呈现的方法的收敛速率。说明性示例清楚地显示了新方法的可靠性和效率,并确认了当前纸张中提供的理论误差估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号