首页> 外文期刊>Engineering with Computers >A high-performance approach on mechanism isomorphism identification based on an adaptive hybrid genetic algorithm for digital intelligent manufacturing
【24h】

A high-performance approach on mechanism isomorphism identification based on an adaptive hybrid genetic algorithm for digital intelligent manufacturing

机译:基于自适应混合遗传算法的数字智能制造高性能机构同构识别方法

获取原文
获取原文并翻译 | 示例

摘要

The graph theory is an important method to achieve conceptual design for mechanism. During the process of kinematic structures enumeration using graph theory, isomorphism identification of graphs is an NP complete problem. It is important to improve the isomorphism identification efficiency and reliability. To solve the problem, an adaptive hybrid genetic algorithm is presented by mixing the improved genetic algorithm and local search algorithm. The crossover rate and mutation rate can be designed as adaptive parameters. Hence, the crossover rate and mutation rate can sustain the variety of the population and adjust the evolution. In the meantime, the pseudo-crossover operator is introduced to improve the search efficiency. In the last, some examples are illustrated to show the high efficiency of the algorithm by comparing with the results in other literatures.
机译:图论是实现机构概念设计的重要方法。在利用图论进行运动学结构枚举的过程中,图的同构识别是一个NP完全问题。重要的是,提高同构识别效率和可靠性。为了解决该问题,提出了一种改进的遗传算法和局部搜索算法相结合的自适应混合遗传算法。交叉率和变异率可以设计为自适应参数。因此,交叉率和突变率可以维持种群的多样性并调节进化。同时,引入伪交叉算子以提高搜索效率。最后,通过与其他文献的结果比较,举例说明了该算法的高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号