首页> 外文期刊>Engineering Structures >In-plane elastic buckling of pin-ended shallow parabolic arches
【24h】

In-plane elastic buckling of pin-ended shallow parabolic arches

机译:销形浅抛物线形拱的面内弹性屈曲

获取原文
获取原文并翻译 | 示例

摘要

The classical buckling theory is commonly adopted to evaluate the buckling load of arches regardless of their types and shapes. For shallow arches, however, the classical buckling theory may overestimate the buckling load because of a large pre-buckling deformation. In this study, the geometrically nonlinear behavior of pin-ended shallow parabolic arches subjected to a vertically distributed load is investigated to evaluate the buckling load. The nonlinear governing equilibrium equation of the parabolic arch is adopted to derive the buckling formula for a pin-ended shallow parabolic arch. Moreover, the threshold of different buckling modes (symmetric and asymmetric) is derived in terms of the slenderness ratio and the rise-to-span ratio of such arches. Numerical examples show that the proposed formula can accurately predict the buckling load of pin-ended parabolic arches.
机译:通常采用经典的屈曲理论来评估拱的屈曲载荷,无论其类型和形状如何。但是,对于浅拱,由于较大的预屈曲变形,经典屈曲理论可能会高估屈曲载荷。在这项研究中,研究了垂直分布载荷作用下的端部浅抛物线拱的几何非线性行为,以评估屈曲载荷。采用抛物线形拱的非线性控制平衡方程,推导了销形浅抛物线形拱的屈曲公式。此外,根据这种拱的长细比和上升跨度比得出不同屈曲模式(对称和不对称)的阈值。数值算例表明,所提出的公式可以准确地预测销形抛物线拱的屈曲载荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号