首页> 外文期刊>Engineering Structures >A large torsion beam finite element model for tapered thin-walled open cross sections beams
【24h】

A large torsion beam finite element model for tapered thin-walled open cross sections beams

机译:锥形薄壁开口截面梁的大扭力梁有限元模型

获取原文
获取原文并翻译 | 示例

摘要

A 3D finite element beam element model is investigated for the behavior, the buckling and the post-buckling analyses of thin-walled tapered beams with open cross sections. For the purpose, a non-linear model is performed in large torsion context according to a new kinematics that accounts for large torsion, flexural-torsional coupling and the presence of tapering terms in bending and torsion. The equilibrium equations are carried out and new tapering stress resultants are then present. This model is extended to finite element formulation in the same circumstances. 3D beams elements with two nodes and seven degrees of freedom per node are adopted. Due to large torsion assumption and flexural torsional coupling, new matrices are established in both the geometric and the initial stress parts of the tangent stiffness matrix. The Arclength method is adopted as solution strategy of the non-linear equations. Many applications are presented that deal with the behavior, the buckling and the post-buckling equilibrium. Comparisons are made with some available solutions and with shell elements of a commercial code. The bifurcation points are in accordance with non-linear stability solutions. Moreover, the present element is also compared to similar tapered beam finite element without the new tapering terms. The proposed beam element is efficient and accurate in both linear and non-linear behavior analyses. It follows a non negligible gain in computation time especially when the post-buckling behavior is performed. (C) 2015 Elsevier Ltd. All rights reserved.
机译:研究了3D有限元梁单元模型,对具有开放截面的薄壁锥形梁的行为,屈曲和后屈曲分析进行了研究。为此,根据一种新的运动学方法,在大扭转情况下执行非线性模型,该模型考虑了大扭转,挠曲-扭转耦合以及在弯曲和扭转中存在渐缩项。执行平衡方程,然后出现新的渐缩应力结果。在相同情况下,该模型扩展到有限元公式化。采用具有两个节点和每个节点七个自由度的3D梁元素。由于存在较大的扭转假定和弯曲扭转​​耦合,因此在切线刚度矩阵的几何和初始应力部分都建立了新的矩阵。采用弧长法作为非线性方程的求解策略。提出了许多处理行为,屈曲和屈曲后平衡的应用程序。比较了一些可用的解决方案和商业代码的shell元素。分叉点符合非线性稳定性解。而且,在没有新的渐缩项的情况下,本元件也与类似的锥形束有限元进行了比较。所提出的梁单元在线性和非线性行为分析中都是高效且准确的。它在计算时间上获得了不可忽略的增益,尤其是在执行屈曲后行为时。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号