首页> 外文期刊>Engineering Structures >An extended shakedown theory on an elastic-plastic spherical shell
【24h】

An extended shakedown theory on an elastic-plastic spherical shell

机译:弹塑性球壳的扩展振动理论

获取原文
获取原文并翻译 | 示例

摘要

The article analyses one of possible optimization methodologies for ideal elastic-plastic structures at shakedown and its application for shallow spherical shells having prescribed geometry and affected by a variable repeated load (VRL)-a system of external forces that may vary independently of each other. The paper accepts that only time-independent upper and lower bounds of variations in external forces are given. The pronounced effect of external forces, i.e. in this context, possible histories of variations in forces, is not examined (the unloading phenomenon of cross-sections is ignored in the course of plastic deformation). The discussed concept of the structure at shakedown refers to the Melan theorem related to statically allowable admissible internal forces. Thus, for the discretization of the spherical shell, with the help of an assumption about small displacements, the equilibrium finite element method based on internal force approximation is applied. The limit axial force of the cross-section is supposed to be constant within the bounds of the finite element, and only the optimal distribution of limit internal forces among elements, according to the selected criterion, is in need of search. The article presents a discrete mathematical model for determining the optimal allocation problem with strength and stiffness requirements. The model conforms to the limit axial force of the shallow spherical shell of the variable repeated load and takes into account ultimate and serviceability limit states of EC3 with corresponding reliability levels. Structural optimization methods refer to extreme energy principles of mechanics and are illustrated with the numerical examples of spherical shell optimization. (C) 2015 Elsevier Ltd. All rights reserved.
机译:这篇文章分析了理想的弹塑性结构在摇晃时的一种可能的优化方法,及其在具有规定几何形状并受可变反复载荷(VRL)影响的浅球形壳中的应用-一种相互独立变化的外力系统。本文接受的是,仅给出了与时间无关的外力变化的上限和下限。没有检查外力的明显影响,即在这种情况下,力的变化历史可能没有被检查过(横截面的卸载现象在塑性变形过程中被忽略了)。所讨论的减震结构概念是指与静态允许的内部允许力有关的Melan定理。因此,对于球壳的离散化,借助于关于小位移的假设,应用了基于内力近似的平衡有限元方法。假定横截面的极限轴向力在有限元的范围内是恒定的,并且根据选择的标准,仅需要搜索极限内力在各元件之间的最佳分布。本文介绍了一种离散数学模型,用于确定具有强度和刚度要求的最佳分配问题。该模型符合反复载荷可变的浅球形壳体的极限轴向力,并考虑了具有相应可靠性级别的EC3的极限和可使用极限状态。结构优化方法参考了力学的极端能量原理,并通过球壳优化的数值示例进行了说明。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号