首页> 外文期刊>Engineering Structures >Estimation of peak displacements in steel structures through dimensional analysis and the efficiency of alternative ground-motion time and length scales
【24h】

Estimation of peak displacements in steel structures through dimensional analysis and the efficiency of alternative ground-motion time and length scales

机译:通过尺寸分析和替代地面运动时间和长度尺度的效率估算钢结构的峰值位移

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the estimation of maximum displacements in single-degree-of-freedom (SDOF) systems simulating typical steel structures by means of dimensional analysis. Peak deformation demands in bilinear systems (representative of moment resisting frames) are considered as well as additional pinching models depicting Partially-Restrained (PR) and Concentrically-Braced (CB) frames subjected to a series of non-coherent acceleration records. Particular attention is given to the identification of efficient length and time scales in non-pulselike earthquake motions. The relative merits of incorporating the mean period of the ground-motion (T-m), predominant period (T-p), significant duration (t(sig)) as well as peak ground acceleration (PGA), peak ground velocity (PGV), root mean square acceleration (a(RMS)), root mean square velocity (v(RMS)) and Arias Intensity (I-a) within the dimensionless functional form are evaluated. When the normalized peak displacements of bilinear, PR and CB oscillators are presented as a function of the normalized yield displacement and dimensionless characteristic structural strengths (both total and at pinching intervals), a clear pattern emerges and the response becomes self-similar. This paper demonstrates that the use of the mean period (T-m) as a time scale produces consistently lower dispersion and bias in the estimations of maximum displacements in comparisons with other ground-motion time scales. Similarly, the root mean square acceleration (alpha(RMS)) is found to be the most efficient amplitude-related parameter for the estimation of maximum displacements in bilinear and CB structures whereas the peak ground acceleration (PGA) is the most efficient ground-motion parameter for the prediction of peak deformations in PR systems. Finally, simple expressions for the assessment of displacement demands in steel structures based on the most-efficient dimensionless master curves are proposed and verified. (C) 2015 Elsevier Ltd. All rights reserved.
机译:本文通过尺寸分析,对模拟典型钢结构的单自由度(SDOF)系统中的最大位移进行估算。考虑了双线性系统(代表抗弯框架)中的峰值变形需求,以及描述了经受一系列非相干加速度记录的部分约束(PR)和同心支撑(CB)框架的附加收缩模型。特别注意确定非脉冲状地震运动中的有效长度和时间尺度。结合地面运动的平均周期(Tm),优势周期(Tp),有效持续时间(t(sig))以及峰值地面加速度(PGA),峰值地面速度(PGV),均方根的相对优点评估了无量纲函数形式内的平方加速度(a(RMS)),均方根速度(v(RMS))和Arias强度(Ia)。当将双线性,PR和CB振荡器的归一化峰值位移表示为归一化屈服位移和无量纲特征结构强度(总体和收缩间隔)的函数时,会出现清晰的图案,并且响应变得自相似。本文证明,与其他地面运动时标相比,使用平均周期(T-m)作为时标在估计最大位移时始终产生较低的离散度和偏差。同样,均方根加速度(alpha(RMS))是用于估计双线性和CB结构中最大位移的最有效的振幅相关参数,而峰值地面加速度(PGA)是最有效的地面运动预测PR系统中峰值变形的参数。最后,提出并验证了基于最有效的无量纲主曲线的钢结构位移需求评估的简单表达式。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号