首页> 外文期刊>Engineering Structures >Load-carrying capacity and mode failure simulation of beam-column joint connection: Application of self-tuning machine learning model
【24h】

Load-carrying capacity and mode failure simulation of beam-column joint connection: Application of self-tuning machine learning model

机译:光束柱关节连接的承载能力和模式故障仿真:自调谐机学习模型的应用

获取原文
获取原文并翻译 | 示例

摘要

The behavior of reinforced concrete external beam-column joint is highly stochastic and nonlinear due to the incorporation of several dimensional and concrete properties. Hence, establishing an accurate predictive for quantifying some beam-column joint characteristics is highly essential for structural engineering aspects. The current study is performed to predict load-carrying capacity (P-max) and mode failure of beam-column joint concrete using newly data intelligence model called extreme learning machine (ELM) model. 153 experimental data are gathered from the literature to construct the predictive model for training and testing phases. The input attributes consisted various dimensional information belong to the beam-column joint and concrete specification, are formed to be supplied for the predictive model. The proposed self-tuning predictive model validated against one of the prevalent regression model namely multivariate adaptive regression spline (MARS) model. The results evidenced that ELM model attained reliable prediction performance in comparison with MARS model. Statistical evaluation reported ELM and MARS models attained minimal root mean square error (RMSE approximate to 14.44 and 18.63), respectively. Accuracy of beam failure (BF) and joint failure (JF) predictions attained for ELM approximate to 0.78 and MARS approximate to 0.73. Overall, ELM model designated as a robust intelligence model can be developed for structural predesigned process and an alternative for empirical codes.
机译:由于掺入多维和混凝土特性,钢筋混凝土外梁柱接头的行为是高度随机和非线性的。因此,建立用于量化一些光束柱关节特性的准确预测对于结构工程方面非常重要。使用新数据智能模型来执行目前的研究以预测横载容量(P-MAX)和光束柱关节混凝土的模式故障,称为极端学习机(ELM)模型。从文献中收集了153个实验数据,以构建培训和测试阶段的预测模型。输入属性组成包括所属的各种尺寸信息,属于光束柱接头和具体规范,以提供预测模型。提出的自我调整预测模型验证了普遍回归模型之一即多元自适应回归样条(MARS)模型。结果证明,与火星模型相比,ELM模型实现了可靠的预测性能。统计评估报告的ELM和MARS模型分别实现了最小的根均线误差(RMSE近似为14.44和18.63)。光束故障(BF)和关节故障(JF)预测的准确性达到0.78,火星近似为0.73。总体而言,可以为结构预测过程和实证代码的替代方案开发指定为强大的智能模型的ELM模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号