首页> 外文OA文献 >Modeling of Hysteretic Behavior of Beam-Column Connections Based on Self-Learning Simulation
【2h】

Modeling of Hysteretic Behavior of Beam-Column Connections Based on Self-Learning Simulation

机译:基于自学习仿真的梁柱节点滞回性能建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Current AISC-LRFD code requires that the moment-rotation characteristics ofconnections be known. Moreover, it requires that these characteristics be incorporated inthe analysis and member design under factored loads (AISC, 2001). Conventionalmodeling approaches to improve the prediction of cyclic behavior starts with a choice of a phenomenological model followed by calibration of the model parameters. However, not only is the improvement limited due to inherent limitations of this approach, but also test results indicate a large variability in load-carrying capacity under earthquake loading.In this research, a new neural network (NN) based cyclic material model is applied toinelastic hysteretic behavior of connections. In the proposed model, two energy-based internal variables are introduced to expedite the learning of hysteretic behavior of materials or structural components. The model has significant advantages over conventional models in that it can handle complex behavior due to local buckling andtearing of connecting elements. Moreover, its numerical implementation is more efficient than the conventional models since it does not need an interaction equation and a plastic potential. A new approach based on a self-learning simulation algorithm is used to characterize the hysteretic behavior of the connections from structural tests. The proposed approach is verified by applying it to both synthetic and experimental examples. For its practical application in semi-rigid connections, design variables are included as inputs to the model through a physical principle based module. The extended model also gives reasonable predictions under earthquake loads even when it is presented with new geometrical properties and loading scenario as well.
机译:当前的AISC-LRFD代码要求知道连接的力矩旋转特性。此外,它要求将这些特征纳入因数载荷下的分析和构件设计中(AISC,2001)。改善循环行为预测的常规建模方法始于选择现象学模型,然后校准模型参数。然而,不仅由于该方法的固有局限性而使改进受到限制,而且测试结果表明地震荷载下的承载能力存在较大差异。在本研究中,应用了一种基于神经网络的新型循环材料模型连接的弹性弹性滞回行为。在提出的模型中,引入了两个基于能量的内部变量,以加快对材料或结构部件的滞后行为的学习。与传统模型相比,该模型具有显着优势,因为它可以处理由于连接元件的局部弯曲和撕裂而引起的复杂行为。此外,由于它不需要相互作用方程和可塑性,因此其数值实现比常规模型更有效。一种基于自学习仿真算法的新方法用于表征结构测试中连接的滞后行为。通过将其应用于合成和实验示例,对所提出的方法进行了验证。对于其在半刚性连接中的实际应用,通过基于物理原理的模块将设计变量作为模型的输入。即使在具有新的几何特性和载荷情况的情况下,扩展模型也可以在地震载荷下给出合理的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号