首页> 外文期刊>Engineering Structures >Load-carrying capacity and mode failure simulation of beam-column joint connection: Application of self-tuning machine learning model
【24h】

Load-carrying capacity and mode failure simulation of beam-column joint connection: Application of self-tuning machine learning model

机译:梁柱节点连接的承载能力和模式失效仿真:自整定学习模型的应用

获取原文
获取原文并翻译 | 示例

摘要

The behavior of reinforced concrete external beam-column joint is highly stochastic and nonlinear due to the incorporation of several dimensional and concrete properties. Hence, establishing an accurate predictive for quantifying some beam-column joint characteristics is highly essential for structural engineering aspects. The current study is performed to predict load-carrying capacity (P-max) and mode failure of beam-column joint concrete using newly data intelligence model called extreme learning machine (ELM) model. 153 experimental data are gathered from the literature to construct the predictive model for training and testing phases. The input attributes consisted various dimensional information belong to the beam-column joint and concrete specification, are formed to be supplied for the predictive model. The proposed self-tuning predictive model validated against one of the prevalent regression model namely multivariate adaptive regression spline (MARS) model. The results evidenced that ELM model attained reliable prediction performance in comparison with MARS model. Statistical evaluation reported ELM and MARS models attained minimal root mean square error (RMSE approximate to 14.44 and 18.63), respectively. Accuracy of beam failure (BF) and joint failure (JF) predictions attained for ELM approximate to 0.78 and MARS approximate to 0.73. Overall, ELM model designated as a robust intelligence model can be developed for structural predesigned process and an alternative for empirical codes.
机译:由于结合了多种尺寸和混凝土特性,钢筋混凝土外部梁柱节点的性能是高度随机和非线性的。因此,对于结构工程方面而言,建立准确的预测以量化某些梁柱节点的特性至关重要。当前的研究是使用新的称为极限学习机(ELM)模型的数据智能模型来预测梁柱混凝土的承载能力(P-max)和模式破坏。从文献中收集了153个实验数据,以构建用于训练和测试阶段的预测模型。输入属性包括属于梁柱节点的各种尺寸信息和具体的规格,形成为预测模型提供。所提出的自我调整预测模型已针对一种流行的回归模型即多元自适应回归样条(MARS)模型进行了验证。结果表明,与MARS模型相比,ELM模型获得了可靠的预测性能。统计评估报告,ELM和MARS模型分别获得最小均方根误差(RMSE分别约为14.44和18.63)。 ELM的梁失效(BF)和接头失效(JF)的预测精度约为0.78,MARS约为0.73。总体而言,可以为结构预先设计的流程开发指定为鲁棒智能模型的ELM模型,并为经验代码开发替代模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号