首页> 外文期刊>Engineering Computations >Least squares and stochastic gradient parameter estimation for multivariable nonlinear Box-Jenkins models based on the auxiliary model and the multi-innovation identification theory
【24h】

Least squares and stochastic gradient parameter estimation for multivariable nonlinear Box-Jenkins models based on the auxiliary model and the multi-innovation identification theory

机译:基于辅助模型和多元创新识别理论的多元非线性Box-Jenkins模型的最小二乘和随机梯度参数估计

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to study the identification methods for multivariable nonlinear Box-Jenkins systems with autoregressive moving average (ARMA) noises, based on the auxiliary model and the multi-innovation identification theory. Design/methodology/approach - A multi-innovation generalized extended least squares (MI-GELS) and a multi-innovation generalized ex-tended stochastic gradient (MI-GESG) algorithms are developed for multivariable nonlinear Box-Jenkins systems based on the auxiliary model. The basic idea is to construct an auxiliary model from the measured data and to replace the unknown terms in the information vector with their estimates (i.e. the outputs of the auxiliary model). Findings - It is found that the proposed algorithms can give high accurate parameter estimation compared with existing stochastic gradient algorithm and recursive extended least squares algorithm. Originality/value - In this paper, the AM-MI-GESG and AM-MI-GELS algorithms for MIMO Box-Jenkins systems with nonlinear input are presented using the multi-innovation identification theory and the proposed algorithms can improve the parameter estimation accuracy. The paper provides a simulation example.
机译:目的-本文的目的是基于辅助模型和多创新识别理论,研究具有自回归移动平均(ARMA)噪声的多变量非线性Box-Jenkins系统的识别方法。设计/方法/方法-基于辅助模型,为多变量非线性Box-Jenkins系统开发了多创新广义广义最小二乘(MI-GELS)和多创新广义扩展随机梯度(MI-GESG)算法。基本思想是根据测得的数据构建一个辅助模型,并用其估计值(即辅助模型的输出)替换信息向量中的未知项。发现-与现有的随机梯度算法和递归扩展最小二乘算法相比,所提出的算法可以提供高精度的参数估计。原创性/价值-在本文中,基于多元创新识别理论,提出了具有非线性输入的MIMO Box-Jenkins系统的AM-MI-GESG和AM-MI-GELS算法,该算法可以提高参数估计的准确性。本文提供了一个仿真示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号