首页> 外文期刊>Signal processing >Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises
【24h】

Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises

机译:基于辅助模型的有色测量噪声的多创新扩展随机梯度参数估计

获取原文
获取原文并翻译 | 示例

摘要

For pseudo-linear regression identification models corresponding output error systems with colored measurement noises, a difficulty of identification is that there exist unknown inner variables and unmeasurable noise terms in the information vector. This paper presents an auxiliary model based multi-innovation extended stochastic gradient algorithm by using the auxiliary model method and by expanding the scalar innovation to an innovation vector. Compared with single innovation extended stochastic gradient algorithm, the proposed approach can generate highly accurate parameter estimates. The simulation results confirm this conclusion.
机译:对于伪线性回归识别模型,其相应的带有彩色测量噪声的输出误差系统的识别困难在于,信息向量中存在未知的内部变量和不可测量的噪声项。通过使用辅助模型方法,并将标量创新扩展为创新向量,提出了一种基于辅助模型的多创新扩展随机梯度算法。与单一创新的扩展随机梯度算法相比,该方法可以生成高度准确的参数估计。仿真结果证实了这一结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号