首页> 外文期刊>Engineering Computations >Application of homotopy perturbation and numerical methods to the magneto-micropolar fluid flow in the presence of radiation
【24h】

Application of homotopy perturbation and numerical methods to the magneto-micropolar fluid flow in the presence of radiation

机译:同态摄动和数值方法在存在辐射的磁微极流体中的应用

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to report the effect of radiation on flow of a magneto-micropolar fluid past a continuously moving plate with suction and blowing. Design/methodology/approach - The governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation. Analytical technique, namely the homotopy perturbation method (HPM) combining with Pade approximants and finite difference method, are used to solve dimensionless non-linear ordinary differential equations. The skin friction coefficient and local Nusselt numbers are also calculated. Beside this, the comparison of the analytical solution with numerical solution is illustrated by the graphs for different values of dimensionless pertinent parameters. Findings - The authors have studied laminar magneto-micropolar flow in the presence of radiation by using HPM-Pade and finite difference methods. Results obtained by HPM-Pade are in excellent agreement with the results of numerical solution. Originality/value - The HPM-Pade is used in a direct way without using linearization, discritization or restrictive assumption. The authors have attempted to show the capabilities and wide-range applications of the HPM-Pade in comparison with the finite difference solution of magneto-micropolar flow in the presence of radiation problem.
机译:目的-本文的目的是报告辐射对磁微极流体流过具有吸力和鼓风的连续运动板的流动的影响。设计/方法/方法-通过相似变换将控制方程转换为无量纲的非线性常微分方程。分析技术,即同伦摄动法(HPM)与Pade近似值和有限差分法相结合,用于求解无量纲非线性常微分方程。还可以计算皮肤摩擦系数和局部Nusselt数。除此之外,用无因次相关参数的不同值的图表说明了解析解与数值解的比较。研究结果-作者通过使用HPM-Pade和有限差分方法研究了存在辐射时的层状磁微极流动。 HPM-Pade获得的结果与数值解的结果非常吻合。原创性/价值-HPM-Pade直接使用,无需使用线性化,离散化或限制性假设。与存在辐射问题的磁微极流有限差分解决方案相比,作者试图展示HPM-Pade的功能和广泛的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号