首页> 外文学位 >Application of the space-time conservation element and solution element numerical method to flows in fluid films.
【24h】

Application of the space-time conservation element and solution element numerical method to flows in fluid films.

机译:时空守恒元和解元数值方法在液膜流动中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This work, situated at the confluence between CFD and tribology, is the first application of a relatively new numerical method, the space-time conservation element and solution element (CE/SE) method, to flows in thin films.; The general features of the numerical method are highlighted, and also the concept of fluid film bearings is presented. The formulations of the governing equations and boundary conditions for four main cases are shown: 1-D and 2-D cavitated bearings using Elrod's formulation, hybrid gas bearings, and gas bearings including inertial effects.; The numerical formulations applied on both uniform and non-uniform grids are presented, with emphasis on the important features of the method when used to solve these specific problems, including the formulation of the boundary conditions.; Based on the described formulations, numerical codes have been developed. The results obtained are compared with experimental values, theoretical results, and numerical results obtained by using other algorithms. In the case of cavitated bearings, because the algorithm developed is capable of capturing potential discontinuities, the differences between the results obtained with the CE/SE method and with previous methods are significant when the position of the full film reformation point is not imposed through the supply system (boundary conditions). Important differences have also been noted in the case of gas bearings including inertia effects. Results demonstrate that the inclusion of inertial effects becomes necessary when the bearing speed is very high and/or the film clearance is large. Flow discontinuities are shown to occur in a manner similar to that of shock waves in supersonic flows.; Comparisons prove that the space-time CE/SE method, when contrasted to previous numerical algorithms, can successfully predict the pressure distribution within bearings, including cases with discontinuities in the lubricant film. Moreover, the method accomplishes this without any special treatment and without introducing distortion and/or excessive dissipation into the solution. The method is thus a strong candidate in applications that require more precise results, such as accurate, robust computation of the cavitation boundaries, as well as to solve transient problems. The method is also a perfect candidate in more complex problems, such as flows at very high speeds with inertia effects.
机译:这项工作位于CFD和摩擦学的交汇处,是一种相对较新的数值方法(时空守恒元素和解元素(CE / SE)方法)在薄膜中的首次应用。重点介绍了数值方法的一般特征,并介绍了液膜轴承的概念。给出了四种主要情况的控制方程和边界条件的公式:采用Elrod公式的一维和二维气穴轴承,混合气体轴承以及包括惯性效应的气体轴承。给出了适用于均匀和非均匀网格的数值公式,重点是该方法用于解决这些特定问题时的重要特征,包括边界条件的公式。基于所描述的公式,已经开发了数字代码。将获得的结果与使用其他算法获得的实验值,理论结果和数值结果进行比较。对于空化轴承,由于开发的算法能够捕获潜在的不连续性,因此当未通过调整来确定整个薄膜重整点的位置时,使用CE / SE方法获得的结果与使用先前方法获得的结果之间的差异就很明显。供应系统(边界条件)。在包括惯性效应的气体轴承的情况下,也注意到了重要的区别。结果表明,当轴承转速很高和/或膜间隙很大时,必须包含惯性效应。流动的不连续性以与超音速流动中的冲击波相似的方式发生。比较证明,与以前的数值算法相比,时空CE / SE方法可以成功地预测轴承内的压力分布,包括润滑膜不连续的情况。此外,该方法无需任何特殊处理,也不会在溶液中引入变形和/或过度耗散来实现此目的。因此,该方法是在需要更精确结果(例如对气蚀边界进行准确,可靠的计算)以及解决瞬态问题的应用中的强力候选者。该方法还是更复杂问题(例如具有惯性效应的超高速流动)的理想选择。

著录项

  • 作者

    Cioc, Sorin.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号