首页> 外文学位 >Numerical simulation of cavitating flows by the space-time conservation element and solution element method.
【24h】

Numerical simulation of cavitating flows by the space-time conservation element and solution element method.

机译:空化流元的时空守恒元和解元法数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Cavitation is a common phenomenon for many engineering devices. The inception, development, and collapse of cavitation produce noise, vibration, and even damage to solid wall surfaces. We developed a model for cavitating flows based on the Space-Time Conservation Element and Solution Element method in conjugation with a homogeneous equilibrium cavitation model.; Commercial codes were used to preliminarily predict internal flows through VCO and mini-sac nozzles and subsequent spray behavior. The numerical results show that nozzle design has strong influences on the exit flow and its subsequent spray atomization. Cavitation may occur at the orifice entrance under high injection pressure. Due to the lack of cavitation model, the predicted discharge coefficients are larger than experimental observations.; A one-dimensional model was developed to simulate cavitating flows through pipeline systems. The numerical simulation captured the acoustic waves and shocks in excellent agreement with our theoretical analysis. The predicted pressure histories at upstream and downstream valves agree well with existing experimental data in terms of amplitude and period.; A two-dimensional model was developed to simulate cavitating flows over hydrofoils and through fuel injectors. The flow field and cavitation over hydrofoils were favorably predicted, as compared with experimental observations. Under different conditions, cavitating flows through fuel injectors generated hydraulic flip, supercavitation, and cyclical cavitation, which are commonly observed in experiments. Cavitation inside the nozzle explains the spray angle oscillation in experiments. Numerical simulation also demonstrated different inception mechanisms of cavitation: boundary layer separation, strong large-scale vortex, and suction force produced over curvy surfaces.
机译:空化是许多工程设备的常见现象。空化的发生,发展和崩溃会产生噪音,振动,甚至损坏坚固的墙壁表面。我们开发了一种基于时空守恒元素和求解元素​​方法并结合均质平衡空化模型的空化模型。商业代码用于初步预测通过VCO和微型囊喷嘴的内部流量以及随后的喷雾行为。数值结果表明,喷嘴设计对出口流量及其随后的喷雾雾化有很大影响。在高注射压力下,孔口处可能会发生气蚀。由于缺少气穴模型,预计的排放系数要比实验观测值大。开发了一维模型来模拟通过管道系统的空化流。数值模拟捕获的声波和冲击与我们的理论分析非常吻合。上游和下游阀门的预测压力历史在振幅和周期方面与现有的实验数据非常吻合。开发了一个二维模型来模拟水翼上和通过喷油器的空化流。与实验观察相比,可以很好地预测水翼的流场和空化现象。在不同条件下,空化流经喷油器会产生水力翻转,超空化和周期性空化,这在实验中通常会观察到。喷嘴内部的气穴现象解释了实验中的喷雾角振荡。数值模拟还表明了不同的气蚀起始机制:边界层分离,强烈的大尺度涡旋以及在弯曲表面上产生的吸力。

著录项

  • 作者

    Qin, Jianrong.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号