首页> 外文期刊>Engineering Computations >A study of risk-adjusted stock selection models using genetic algorithms
【24h】

A study of risk-adjusted stock selection models using genetic algorithms

机译:基于遗传算法的风险调整选股模型研究

获取原文
获取原文并翻译 | 示例

摘要

Purpose - Stock selection has long been identified as a challenging task. This line of research is highly contingent upon reliable stock ranking for successful portfolio construction. The purpose of this paper is to employ the methods from computational intelligence (CI) to solve this problem more effectively. Design/methodology/approach - The authors develop a risk-adjusted strategy to improve upon the previous stock selection models by two main risk measures - downside risk and variation in returns. Moreover, the authors employ the genetic algorithm for optimization of model parameters and selection for input variables simultaneously. Findings - It is found that the proposed risk-adjusted methodology via maximum drawdown significantly outperforms the benchmark and improves the previous model in the performance of stock selection. Research limitations/implications - Future work considers an extensive study for the risk-adjusted model using other risk measures such as Value at Risk, Block Maxima, etc. The authors also intend to use financial data from other countries, if available, in order to assess if the method is generally applicable and robust across different environments. Practical implications - The authors expect this risk-adjusted model to advance the CI research for financial engineering and provide an promising solutions to stock selection in practice. Originality/value - The originality of this work is that maximum drawdown is being successfully incorporated into the CI-based stock selection model in which the model's effectiveness is validated with strong statistical evidence.
机译:目的-长期以来,选股一直是一项艰巨的任务。这方面的研究在很大程度上取决于可靠的股票排名,以成功构建投资组合。本文的目的是采用来自计算智能(CI)的方法来更有效地解决此问题。设计/方法/方法-作者开发了一种风险调整策略,以通过两种主要风险度量(下行风险和收益变动)来改进以前的股票选择模型。此外,作者采用遗传算法优化模型参数并同时选择输入变量。调查结果-发现通过最大跌幅提出的风险调整方法明显优于基准,并改善了股票选择绩效中的先前模型。研究的局限性/含意-未来的工作考虑使用其他风险度量方法(例如,风险价值,整体最大风险等)对风险调整后的模型进行广泛的研究。作者还打算使用其他国家的财务数据(如果有)来评估该方法是否普遍适用并在不同环境中具有鲁棒性。实际意义-作者期望这种经过风险调整的模型能够促进金融工程的CI研究,并为实践中的股票选择提供有希望的解决方案。独创性/价值-这项工作的独创性是将最大亏损成功地整合到基于CI的选股模型中,该模型的有效性得到了有力的统计证据的验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号