首页> 外文期刊>Engineering Computations >A combined reordering procedure for preconditioned GMRES applied to solving equations using Lagrange multiplier method
【24h】

A combined reordering procedure for preconditioned GMRES applied to solving equations using Lagrange multiplier method

机译:拉格朗日乘子法将预处理GMRES的组合重排序过程应用于求解方程

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to propose a combined reordering scheme with a wide range of application, called Reversed Cuthill-McKee-approximate minimum degree (RCM-AMD), to improve a preconditioned general minimal residual method for solving equations using Lagrange multiplier method, and facilitates the choice of the reordering for the iterative method. Design/methodology/approach - To reordering the coefficient matrix before a preconditioned iterative method will greatly impact its convergence behavior, but the effect is very problem-dependent, even performs very differently when different preconditionings applied for an identical problem or the scale of the problem varies. The proposed reordering scheme is designed based on the features of two popular ordering schemes, RCM and AMD, and benefits from each of them. Findings - Via numerical experiments for the cases of various scales and difficulties, the effects of RCM-AMD on the preconditioner and the convergence are investigated and the comparisons of RCM, AMD and RCM-AMD are presented. The results show that the proposed reordering scheme RCM-AMD is appropriate for large-scale and difficult problems and can be used more generally and conveniently. The reason of the reordering effects is further analyzed as well. Originality/value - The proposed RCM-AMD reordering scheme preferable for solving equations using Lagrange multiplier method, especially considering that the large-scale and difficult problems are very common in practical application. This combined reordering scheme is more wide-ranging and facilitates the choice of the reordering for the iterative method, and the proposed iterative method has good performance for practical cases in in-house and commercial codes on PC.
机译:目的-本文的目的是提出一种具有广泛应用范围的组合重排序方案,称为反向Cuthill-McKee-逼近最小度(RCM-AMD),以改进使用Lagrange乘子求解方程的预处理通用最小残差方法。方法,并便于选择迭代方法的重排序。设计/方法/方法-在预处理迭代方法之前对系数矩阵进行重新排序将极大地影响其收敛行为,但是效果非常依赖于问题,甚至在针对相同问题或问题规模应用不同的预处理时,其效果也非常不同。不同。所提出的重新排序方案是根据两种流行的排序方案RCM和AMD的特点设计的,并从中受益。发现-通过各种规模和困难情况的数值实验,研究了RCM-AMD对预处理器的影响和收敛性,并给出了RCM,AMD和RCM-AMD的比较。结果表明,所提出的重排序方案RCM-AMD适用于大规模,困难的问题,可以更普遍,更方便地使用。重新排序效果的原因也将进一步分析。独创性/价值-提出的RCM-AMD重排序方案更适合使用拉格朗日乘子法求解方程,特别是考虑到在实际应用中大规模和困难问题非常普遍。这种组合的重排序方案范围更广,并且为迭代方法的重排序提供了便利,并且所提出的迭代方法在PC上内部和商业代码中的实际案例中都具有良好的性能。

著录项

  • 来源
    《Engineering Computations》 |2014年第7期|1283-1304|共22页
  • 作者单位

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology, Wuhan, PR. China;

    School of Mechanical & Automotive Engineering,South China University of Technology,Guangzhou, P.R. China;

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology, Wuhan, PR. China;

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology, Wuhan, PR. China;

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology,Wuhan, PR. China and Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, P.R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lagrange multiplier method; GMRES; ILU preconditioning; MPC; Reordering;

    机译:拉格朗日乘数法;GMRES;ILU预处理;MPC;重新排序;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号