首页> 外文期刊>Engineering Computations >An efficient preconditioned Krylov subspace method for large-scale finite element equations with MPC using Lagrange multiplier method
【24h】

An efficient preconditioned Krylov subspace method for large-scale finite element equations with MPC using Lagrange multiplier method

机译:使用拉格朗日乘数法的带MPC的大规模有限元方程组的高效预处理Krylov子空间方法

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to propose an efficient iterative method for large-scale finite element equations of bad numerical stability arising from deformation analysis with multi-point constraint using Lagrange multiplier method. Design/methodology/approach - In this paper, taking warpage analysis of polymer injection molding based on surface model as an example, the performance of several popular Krylov subspace methods, including conjugate gradient, BiCGSTAB and generalized minimal residual (GMRES), with diffident Incomplete LU (ILU)-type preconditions is investigated and compared. For controlling memory usage, GMRES(m) is also considered. And the ordering technique, commonly used in the direct method, is introduced into the presented iterative method to improve the preconditioner. Findings - It is found that the proposed preconditioned GMRES method is robust and effective for solving problems considered in this paper, and approximate minimum degree (AMD) ordering is most beneficial for the reduction of fill-ins in the ILU preconditioner and acceleration of the convergence, especially for relatively accurate ILU-type preconditioning. And because of concerns about memory usage, GMRES(m) is a good choice if necessary. Originality/value - In this paper, for overcoming difficulties of bad numerical stability resulting from Lagrange multiplier method, together with increasing scale of problems in engineering applications and limited hardware conditions of computer, a stable and efficient preconditioned iterative method is proposed for practical purpose. Before the preconditioning, AMD reordering, commonly used in the direct method, is introduced to improve the preconditioner. The numerical experiments show the good performance of the proposed iterative method for practical cases, which is implemented in in-house and commercial codes on PC.
机译:目的-本文的目的是为使用拉格朗日乘数法进行多点约束的变形分析引起的数值稳定性差的大型有限元方程组提供一种有效的迭代方法。设计/方法/方法-本文以基于表面模型的聚合物注射成型的翘曲分析为例,介绍了几种流行的Krylov子空间方法的性能,包括共轭梯度法,BiCGSTAB和广义最小残差(GMRES),以及不完全衍射LU(ILU)类型的前提条件进行了研究和比较。为了控制内存使用,还考虑了GMRES(m)。并将直接方法中常用的排序技术引入所提出的迭代方法中,以改进预处理器。发现-所提出的预处理GMRES方法对于解决本文中考虑的问题是鲁棒且有效的,并且近似最小度(AMD)排序对于减少ILU预处理器中的填充和加速收敛最有利。 ,尤其适用于相对准确的ILU型预处理。并且由于担心内存使用情况,因此如果需要,GMRES(m)是一个不错的选择。独创性/价值-在本文中,为克服因拉格朗日乘数法导致的数值稳定性差的困难,以及工程应用中问题规模的不断扩大和计算机硬件条件的局限性,提出了一种实用,稳定,有效的预处理迭代方法。在进行预处理之前,通常会使用直接方法中的AMD重新排序来改进预处理器。数值实验表明,所提出的迭代方法在实际情况下具有良好的性能,可以在PC机上的内部代码和商业代码中实现。

著录项

  • 来源
    《Engineering Computations》 |2014年第7期|1169-1197|共29页
  • 作者单位

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology,Wuhan, P.R. China and Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, P. R. China;

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology, Wuhan, P.R. China;

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology, Wuhan, P.R. China;

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology, Wuhan,P. R. China and Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, P. R. China;

    State Key Laboratory of Material Processing and Die & Mold Technology,Huazhong University of Science and Technology, Wuhan, P.R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    AMD ordering; Ill-condition matrix; ILU-type preconditioning; Krylov subspace method; Lagrange multiplier method; Large-scale problem;

    机译:AMD订购;病态矩阵ILU型预处理;Krylov子空间方法;拉格朗日乘数法;大规模问题;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号