首页> 外文期刊>Engineering Applications of Artificial Intelligence >Optimization techniques applied to multiple manipulators for path planning and torque minimization
【24h】

Optimization techniques applied to multiple manipulators for path planning and torque minimization

机译:应用于多个机械手的优化技术,用于路径规划和扭矩最小化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the formulation and application of a strategy for the determination of an optimal trajectory for a multiple robotic configuration. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used as the optimization techniques and results obtained from them compared. First, the motivation for multiple robot control and the current state-of-art in the field of cooperating robots are briefly given. This is followed by a discussion of energy minimization techniques in the context of robotics, and finally, the principles of using genetic algorithms and simulated annealing as an optimization tool are included. The initial and final positions of the end effector are specified. Two cases, one of a single manipulator, and the other of two cooperating manipulators carrying a common payload illustrate the proposed approach. The GA and SA techniques identify the optimal trajectory based on minimum joint torque requirements. The simulations performed for both the cases show that although both the methods converge to the global minimum, the SA converges to solution faster than the GA.
机译:本文介绍了用于确定多机器人配置的最佳轨迹的策略的制定和应用。遗传算法(GA)和模拟退火(SA)已用作优化技术,并比较了从中获得的结果。首先,简要介绍了多机器人控制的动机以及协作机器人领域中的最新技术。接下来是在机器人技术中讨论能量最小化技术,最后,包括使用遗传算法和模拟退火作为优化工具的原理。指定了末端执行器的初始位置和最终位置。两种情况,一种是单个操纵器,另一种是携带共同有效载荷的两个协作操纵器,说明了所提出的方法。 GA和SA技术根据最小的关节扭矩要求来确定最佳轨迹。针对这两种情况进行的仿真表明,尽管两种方法都收敛于全局最小值,但SA收敛速度比GA更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号