首页> 外文期刊>Engineering Applications of Artificial Intelligence >Neural network-based failure rate prediction for De Havilland Dash-8 tires
【24h】

Neural network-based failure rate prediction for De Havilland Dash-8 tires

机译:De Havilland Dash-8轮胎的基于神经网络的故障率预测

获取原文
获取原文并翻译 | 示例

摘要

An artificial neural network (ANN) model for predicting the failure rate of De Havilland Dash-8 airplane tires utilizing the two-layered feed-forward back-propagation algorithm as a learning rule is developed. The inputs to the neural network are independent variables and the output is the failure rate of the tires. Six years of data are used for model building and validation. Model validation, which reflects the suitability of the model for future prediction is performed by comparing the predictions of the model with that of Weibull regression model. The results show that the failure rate predicted by the ANN is closer in agreement with the actual data than the failure rate predicted by the Weibull model.
机译:建立了以两层前馈反向传播算法为学习准则的预测De Havilland Dash-8飞机轮胎失效率的人工神经网络模型。神经网络的输入是自变量,输出是轮胎的失效率。六年的数据用于模型构建和验证。通过将模型的预测与Weibull回归模型的预测进行比较,可以执行反映模型对未来预测适用性的模型验证。结果表明,人工神经网络预测的失效率与实际数据相比比魏布尔模型预测的失效率更接近实际。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号