首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multiple-step-ahead prediction in control systems with Gaussian process models and TS-fuzzy models
【24h】

Multiple-step-ahead prediction in control systems with Gaussian process models and TS-fuzzy models

机译:具有高斯过程模型和TS模糊模型的控制系统中的多步提前预测

获取原文
获取原文并翻译 | 示例

摘要

In this paper one-step-ahead and multiple-step-ahead predictions of time series in disturbed open loop and closed loop systems using Gaussian process models and TS-fuzzy models are described. Gaussian process models are based on the Bayesian framework where the conditional distribution of output measurements is used for the prediction of the system outputs. For one-step-ahead prediction a local process model with a small past horizon is built online with the help of Gaussian processes. Multiple-step-ahead prediction requires the knowledge of previous outputs and control values as well as the future control values. A "naive" multiple-step-ahead prediction is a successive one-step-ahead prediction where the outputs in each consecutive step are used as inputs for the next step of prediction. A global TS-fuzzy model is built to generate the nominal future control trajectory for multiple-step-ahead prediction. In the presence of model uncertainties a correction of the so computed control trajectory is needed. This is done by an internal feedback between the two process models. The method is tested on disturbed time invariant and time variant systems for different past horizons. The combination of the TS-fuzzy model and the Gaussian process model together with a correction of the control trajectory shows a good performance of the multiple-step-ahead prediction for systems with uncertainties.
机译:在本文中,描述了使用高斯过程模型和TS模糊模型对开环和闭环系统的时间序列进行提前和多步预测。高斯过程模型基于贝叶斯框架,其中使用输出测量的条件分布来预测系统输出。对于提前一步的预测,借助高斯过程在线建立了一个具有较小过去视野的本地过程模型。多步提前预测需要了解先前的输出和控制值以及将来的控制值。 “朴素”的多步提前预测是连续的一步提前预测,其中每个连续步长中的输出用作下一步预测的输入。建立了全局TS模糊模型以生成用于多步提前预测的名义未来控制轨迹。在存在模型不确定性的情况下,需要对如此计算出的控制轨迹进行校正。这是通过两个过程模型之间的内部反馈来完成的。该方法在受干扰的时不变和时变系统上针对不同的过去时间进行了测试。 TS模糊模型和高斯过程模型的结合以及对控制轨迹的校正显示了对不确定性系统的多步提前预测的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号