首页> 外文期刊>Engineering Applications of Artificial Intelligence >Genetically programmed-based artificial features extraction applied to fault detection
【24h】

Genetically programmed-based artificial features extraction applied to fault detection

机译:基于遗传程序的人工特征提取应用于故障检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel application of genetically programmed artificial features, which are computer crafted, data driven, and possibly without physical interpretation, to the problem of fault detection. Artificial features are extracted from vibration data of an accelerometer sensor to monitor and detect a crack fault or incipient failure seeded in an intermediate gearbox of a helicopter's main transmission. Classification accuracies for the artificial feature constructed from raw data exceeded 99% over training and independent validation sets. As a benchmark, GP-based artificial features constructed from conventional ones underperformed those derived from raw data by over 2% over the training and over 11% over the testing data.
机译:本文介绍了遗传程序人工特征的新应用,这些人工特征是计算机制作的,数据驱动的,并且可能没有物理解释,可以用于故障检测问题。从加速度传感器的振动数据中提取人工特征,以监视和检测植入直升机直升飞机主变速箱中间变速箱中的裂纹故障或初期故障。在训练和独立验证集的基础上,根据原始数据构建的人工特征的分类精度超过了99%。作为基准,由常规特征构造的基于GP的人工特征在训练中的表现不及从原始数据得出的人工特征,其性能超过测试数据的11%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号