首页> 外文学位 >Artificial intelligence techniques applied to fault detection systems.
【24h】

Artificial intelligence techniques applied to fault detection systems.

机译:人工智能技术应用于故障检测系统。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents novel applications of Artificial Intelligence-based algorithms to Failure Detection Systems. It shows the benefits intelligent, adaptive blocks can provide along with potential pitfalls. A new fault detection structure is introduced which has desirable properties when dealing with missing data, or data corrupted by extraneous disturbances. A classical alarm generation procedure is extended by transformation into an optimum, real-time, adaptive block.; Two techniques, artificial Neural Networks, and Partial Least Squares, complement each other in one of the failure detection applications exploiting their respective non-linear and de-correlation strengths.; Artificial Intelligence techniques are compared side by side with classical approaches and the results are analyzed.; Three practical examples are examined: The Static Security Assessment of Electric Power Systems, the Oil Leak Detection in Underground Power Cables, and the Stator Overheating Detector. These case studies are demonstrated since each one represents a class of failure detection problems.; The Static Security Assessment of Electric Power Systems is a class of problems with inputs which are somewhat correlated, and which has very little learning data. While the time required for the system to learn is not a concern, the recall time must be short, providing for real-time performance.; The Oil Leak Detection in Underground Power Cables represents the class of problems where one has vast amounts of data indicative of a properly functioning system, however data from a failed system are very sparse. Unlike the Static Security Assessment problem, the oil leak detector has to consider the time dynamics of the system. Special provisions must be made to accommodate missing data which would interrupt contiguous data sets required for proper operation. This case study shows ways to exploit the slight sensor redundancy in order to detect sensor breakdown along with the detection of the main system failure.; A third class of problems is showcased by the Electric Generator Stator Overheating detector. This application must deal with highly correlated inputs, along with the lack of fault data to be used for learning. Physical system non-linearities as well as time dynamics must also be addressed.
机译:本文提出了基于人工智能的算法在故障检测系统中的新应用。它显示了智能,自适应块可以提供的好处以及潜在的陷阱。引入了一种新的故障检测结构,该结构在处理丢失的数据或由于外部干扰而损坏的数据时具有理想的属性。通过转换成最佳的实时自适应块,可以扩展经典的警报生成过程。两种技术,人工神经网络和偏最小二乘,在故障检测应用程序之一中相互补充,充分利用了它们各自的非线性和去相关强度。将人工智能技术与经典方法进行比较,并对结果进行分析。研究了三个实际示例:电力系统的静态安全评估,地下电缆中的油泄漏检测以及定子过热检测器。这些案例研究得到了证明,因为每个案例都代表一类故障检测问题。电力系统的静态安全评估是一类问题,其输入在某种程度上是相关的,并且学习数据很少。虽然系统学习所需的时间不是问题,但召回时间必须很短,以提供实时性能。地下电力电缆中的漏油检测代表一类问题,其中的大量数据表示系统正常运行,但是故障系统中的数据很少。与静态安全评估问题不同,漏油检测器必须考虑系统的时间动态。必须采取特殊措施来容纳丢失的数据,这些数据会中断正常运行所需的连续数据集。该案例研究显示了利用轻微的传感器冗余来检测传感器故障以及检测主系统故障的方法。发电机定子过热检测器展示了第三类问题。该应用程序必须处理高度相关的输入,以及缺乏用于学习的故障数据。物理系统的非线性以及时间动态也必须解决。

著录项

  • 作者

    Fischer, Daniel.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Electronics and Electrical.; Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号