首页> 外文期刊>Engineering Applications of Artificial Intelligence >Gene expression data analysis with the clustering method based on an improved quantum-behaved Particle Swarm Optimization
【24h】

Gene expression data analysis with the clustering method based on an improved quantum-behaved Particle Swarm Optimization

机译:基于改进的量子行为粒子群优化算法的聚类基因表达数据分析

获取原文
获取原文并翻译 | 示例

摘要

Microarray technology has been widely applied in study of measuring gene expression levels for thousands of genes simultaneously. In this technology, gene cluster analysis is useful for discovering the function of gene because co-expressed genes are likely to share the same biological function. Many clustering algorithms have been used in the field of gene clustering. This paper proposes a new scheme for clustering gene expression datasets based on a modified version of Quantum-behaved Particle Swarm Optimization (QPSO) algorithm, known as the Multi-Elitist QPSO (MEQPSO) model. The proposed clustering method also employs a one-step K-means operator to effectively accelerate the convergence speed of the algorithm. The MEQPSO algorithm is tested and compared with some other recently proposed PSO and QPSO variants on a suite of benchmark functions. Based on the computer simulations, some empirical guidelines have been provided for selecting the suitable parameters of MEQPSO clustering. The performance of MEQPSO clustering algorithm has been extensively compared with several optimization-based algorithms and classical clustering algorithms over several artificial and real gene expression datasets. Our results indicate that MEQPSO clustering algorithm is a promising technique and can be widely used for gene clustering.
机译:微阵列技术已广泛应用于同时测量数千个基因的基因表达水平的研究中。在这项技术中,基因簇分析可用于发现基因的功能,因为共表达的基因可能具有相同的生物学功能。在基因聚类领域中已经使用了许多聚类算法。本文提出了一种基于改进的量子行为粒子群算法(QPSO)算法的基因表达数据集聚类新方案,称为Multi-Elitist QPSO(MEQPSO)模型。所提出的聚类方法还采用了一步式K均值算子来有效地加快算法的收敛速度。测试了MEQPSO算法,并将其与一系列基准功能套件上最近提出的其他一些PSO和QPSO变体进行了比较。基于计算机仿真,提供了一些经验准则,用于选择MEQPSO聚类的合适参数。 MEQPSO聚类算法的性能已与几种基于优化的算法和经典聚类算法在多个人工和真实基因表达数据集上进行了广泛比较。我们的结果表明,MEQPSO聚类算法是一种很有前途的技术,可以广泛用于基因聚类。

著录项

  • 来源
  • 作者单位

    Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Computer Science and Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu 214122, PR China;

    Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Computer Science and Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu 214122, PR China;

    Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Computer Science and Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu 214122, PR China;

    Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Computer Science and Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu 214122, PR China;

    Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Computer Science and Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu 214122, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gene expression data; clustering; particle swarm optimization (PSO); quantum-behaved particle swarm; optimization (QPSO);

    机译:基因表达数据;集群粒子群优化(PSO);量子行为粒子群优化(QPSO);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号