首页> 中文期刊> 《计算机应用》 >双层规划的改进混合布谷鸟搜索量子行为粒子群优化算法

双层规划的改进混合布谷鸟搜索量子行为粒子群优化算法

     

摘要

为解决粒子群优化(PSO)算法求解双层规划问题时易陷入局部最优解的问题,提出了一种基于模拟退火(SA)Metropolis准则的改进混合布谷鸟搜索量子行为粒子群优化(ICSQPSO)算法.首先,该混合算法引入SA算法中的Metropolis准则,在求解过程中既能接受好解也能以一定的概率接受坏解,增强全局寻优能力;接着,为布谷鸟搜索算法设计一种改进动态步长Lévy飞行,以保持粒子群在优化过程中较高的多样性,保证搜索广度;最后,利用布谷鸟搜索算法中的偏好随机游走机制帮助粒子跳出局部最优解.通过对13个涵盖非线性规划、分式规划、多个下层规划的双层规划实例的数值实验,结果表明:ICSQPSO算法所得12个双层规划的目标函数最优值显著优于对比算法,只有1例的结果稍差,并且有半数实例的结果优于对比算法50%.由此可见,ICSQPSO算法对双层规划的寻优能力明显优于对比算法.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号