首页> 外文期刊>Engineering Applications of Artificial Intelligence >A hybrid approach combining extreme learning machine and sparse representation for image classification
【24h】

A hybrid approach combining extreme learning machine and sparse representation for image classification

机译:结合了极端学习机和稀疏表示的混合方法进行图像分类

获取原文
获取原文并翻译 | 示例

摘要

Two well-known techniques, extreme learning machine (ELM) and sparse representation based classification (SRC) method, have attracted significant attention due to their respective performance characteristics in computer vision and pattern recognition. In general, ELM has speed advantage and SRC has accuracy advantage. However, there also remain drawbacks that limit their practical application. Actually, in the field of image classification, ELM performs extremely fast while it cannot handle noise well, whereas SRC shows notable robustness to noise while it suffers high computational cost. In order to incorporate their respective advantages and also overcome their respective drawbacks, this work proposes a novel hybrid approach combining ELM and SRC for image classification. The new approach is applied to handwritten digit classification and face recognition, experiments results demonstrate that it not only outperforms ELM in classification accuracy but also has much less computational complexity than SRC.
机译:两种众所周知的技术,即极限学习机(ELM)和基于稀疏表示的分类(SRC)方法,由于它们各自在计算机视觉和模式识别中的性能特征而引起了极大的关注。通常,ELM具有速度优势,而SRC具有精度优势。但是,仍然存在限制其实际应用的缺点。实际上,在图像分类领域,ELM的执行速度非常快,但不能很好地处理噪声,而SRC却表现出对噪声的显着鲁棒性,而计算成本却很高。为了合并它们各自的优点并克服它们各自的缺点,这项工作提出了一种结合了ELM和SRC的新颖混合方法来进行图像分类。该新方法应用于手写数字分类和人脸识别,实验结果表明,该方法不仅在分类精度上优于ELM,而且计算复杂度比SRC小得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号