首页> 外文期刊>Signal Processing, IET >Hybrid classification approach using extreme learning machine and sparse representation classifier with adaptive threshold
【24h】

Hybrid classification approach using extreme learning machine and sparse representation classifier with adaptive threshold

机译:使用极限学习机和具有自适应阈值的稀疏表示分类器的混合分类方法

获取原文
获取原文并翻译 | 示例

摘要

Here, the authors propose a hybrid classification approach using extreme learning machine (ELM) and sparse representation classifier (SRC) with adaptive threshold, which they called ATELMSRC. ATELMSRC can adaptively adjust the threshold, and make more test images correctly classified by ELM compared with ELMSRC, which not only reduces the classification time greatly but also improves the classification accuracy. In addition, primal augmented Lagrangian method is used in ATELMSRC to speed up the solution ofn$ell _1$1n-norm, which also speeds up the classification process. Experimental results on USPS handwritten digits data set and UMIST face data set show that the total classification time of the authors ATELMSRC is very short for large data sets, only 1/310 of SRC, 1/805 of extended SRC (ESRC), and 1/41 of ELMSRC. Meanwhile, the classification accuracy of the authors’ ATELMSRC is 97.80% on USPS handwritten digits data set, and 99.27% on UMIST face data set, which are higher than those of ELM, SRC, ESRC, ELMSRC etcn.
机译:在这里,作者提出了一种混合学习方法,使用具有自适应阈值的极限学习机(ELM)和稀疏表示分类器(SRC),他们将其称为ATELMSRC。与ELMSRC相比,ATELMSRC可以自适应地调整阈值,并通过ELM对更多的测试图像进​​行正确分类,这不仅大大减少了分类时间,而且提高了分类精度。另外,在ATELMSRC中使用了原始增强拉格朗日方法来加速n <替代方法> $ ell _1 $ 1 n-norm,这也加快了分类过程。在USPS手写数字数据集和UMIST面部数据集上的实验结果表明,对于大型数据集,作者ATELMSRC的总分类时间非常短,只有SRC的1/310,扩展SRC(ESRC)的1/805和1 / 41的ELMSRC。同时,作者的ATELMSRC在USPS手写数字数据集上的分类准确度为97.80%,在UMIST面部数据集上的分类准确度为99.27%,高于ELM,SRC,ESRC,ELMSRC等。nn

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号