首页> 外文期刊>Engineering Applications of Artificial Intelligence >Combining knowledge and historical data for system-level fault diagnosis of HVAC systems
【24h】

Combining knowledge and historical data for system-level fault diagnosis of HVAC systems

机译:结合知识和历史数据进行HVAC系统的系统级故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Interdependencies among system components and the existence of multiple operating modes present a challenge for fault diagnosis of Heating, Ventilation, and Air Conditioning (HVAC) systems. Reliable and timely diagnosis can only be ensured when it is performed in all operating modes, and at the system level, rather than at the level of the individual components. Nevertheless, almost no HVAC fault diagnosis methods that satisfy these requirements are described in literature. In this paper, we propose a multiple-model approach to system-level HVAC fault diagnosis that takes component interdependencies and multiple operating modes into account. For each operating mode, a distinct Bayesian network (diagnostic model) is defined at the system level. The models are constructed based on knowledge regarding component interdependencies and conservation laws, and based on historical data through the use of virtual sensors. We show that component interdependencies provide useful features for fault diagnosis. Incorporating these features results in better diagnosis results, especially when only a few monitoring signals are available. Simulations demonstrate the performance of the proposed method: faults are timely and correctly diagnosed, provided that the faults result in observable behavior.
机译:系统组件之间的相互依赖性以及多种运行模式的存在为加热,通风和空调(HVAC)系统的故障诊断提出了挑战。只有在所有操作模式下,在系统级别而不是在单个组件级别执行诊断时,才能确保可靠,及时的诊断。然而,文献中几乎没有描述满足这些要求的HVAC故障诊断方法。在本文中,我们提出了一种用于系统级HVAC故障诊断的多模型方法,该方法考虑了组件的相互依赖性和多种操作模式。对于每种操作模式,在系统级别定义了不同的贝叶斯网络(诊断模型)。这些模型是基于有关组件相互依赖性和守恒定律的知识以及通过使用虚拟传感器的历史数据而构建的。我们证明了组件相互依赖性为故障诊断提供了有用的功能。合并这些功能可以提供更好的诊断结果,尤其是在只有少量监视信号可用时。仿真表明了所提出方法的性能:只要能够导致可观察到的行为,就可以及时正确地诊断故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号