首页> 美国卫生研究院文献>PLoS Computational Biology >A dual regulation mechanism of histidine kinase CheA identified by combining network-dynamics modeling and system-level input-output data
【2h】

A dual regulation mechanism of histidine kinase CheA identified by combining network-dynamics modeling and system-level input-output data

机译:通过结合网络动力学建模和系统级输入输出数据确定组氨酸激酶CheA的双重调控机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is challenging to decipher molecular mechanisms in biological systems from system-level input-output data, especially for complex processes that involve interactions among multiple components. We addressed this general problem for the bacterial histidine kinase CheA, the activity of which is regulated in chemotaxis signaling complexes by bacterial chemoreceptors. We developed a general network model to describe the dynamics of the system, treating the receptor complex with coupling protein CheW and the P3P4P5 domains of kinase CheA as a regulated enzyme with two substrates, ATP and P1, the phosphoryl-accepting domain of CheA. Our simple network model allowed us to search hypothesis space systematically. For different and progressively more complex regulation schemes, we fit our models to a large set of input-output data with the aim of identifying the simplest possible regulation mechanisms consistent with the data. Our modeling and analysis revealed novel dual regulation mechanisms in which receptor activity regulated ATP binding plus one other process, either P1 binding or phosphoryl transfer between P1 and ATP. Strikingly, in our models receptor control affected the kinetic rate constants of substrate association and dissociation equally and thus did not alter the respective equilibrium constants. We suggest experiments that could distinguish between the two dual-regulation mechanisms. This systems-biology approach of combining modeling and a large input-output dataset should be applicable for studying other complex biological processes.
机译:从系统级输入-输出数据中破译生物系统中的分子机制是一项挑战,特别是对于涉及多个组件之间相互作用的复杂过程而言。我们针对细菌组氨酸激酶CheA解决了这个一般性问题,该活性在细菌趋化信号复合物中由细菌化学感受器调节。我们开发了一个通用的网络模型来描述系统的动力学,将其与偶联蛋白CheW和激酶CheA的P3P4P5结构域作为受调控的酶结合在一起,将其与两种底物ATP和P1(CheA的磷酰基接受域)一起处理。我们简单的网络模型使我们能够系统地搜索假设空间。对于不同的且逐渐复杂的调节方案,我们将模型拟合到大量的输入输出数据,以识别与数据一致的最简单的调节机制。我们的建模和分析揭示了新颖的双重调节机制,其中受体活性调节ATP结合以及一个其他过程,即P1结合或P1和ATP之间的磷酰基转移。令人惊讶的是,在我们的模型中,受体控制平均影响底物缔合和解离的动力学速率常数,因此不会改变各自的平衡常数。我们建议进行实验,以区分两种双重调节机制。这种将建模与大量输入输出数据集相结合的系统生物学方法应适用于研究其他复杂的生物过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号