首页> 外文期刊>Engineering Applications of Artificial Intelligence >Learning and representation of event-discrete situations for individualized situation recognition using fuzzy Situation-Operator Modeling
【24h】

Learning and representation of event-discrete situations for individualized situation recognition using fuzzy Situation-Operator Modeling

机译:事件离散情况的学习和表示,用于基于模糊情况-操作员建模的个性化情况识别

获取原文
获取原文并翻译 | 示例

摘要

Knowledge representation and the ability to learn new knowledge define the success of situation recognition within cognitive systems. In this contribution, it is assumed that a complex environment in which a system is acting is modeled using an event-discrete approach. The modeling would be based on imprecise and uncertain knowledge about the environment, which is adapted by suitable learning abilities during the interaction between the system and environment.The main contribution of this paper is developing an approximate reasoning approach driven by learning and reusing human-operator experiences to handle event-discrete situations in unknown dynamic environments. A new approach for modeling and learning the knowledge for situation recognition in human operator assistance systems is proposed. Situation recognition is individualized for humans by learning exclusive experiences of human operators in interaction with the environment. Individualization is caused by variety of human operators in definition of priorities and goals, generation of events, and different environmental characteristics importance in specification of situations. For modeling interaction-based knowledge structures, a fuzzy Situation-Operator Modeling approach is used and improved by applying a feature selection process. The corresponding approach is able to learn and represent new knowledge to improve the performance of individualized situation recognition for cognitive systems.Here, the proposed approach is applied using a simulated driving environment and evaluated for different test drivers. Evaluation results highlight the ability and importance of the proposed approach for situation recognition in driving assistance systems.
机译:知识表示和学习新知识的能力定义了认知系统中情况识别的成功。在此贡献中,假定使用事件离散方法对系统在其中起作用的复杂环境进行建模。该建模将基于对环境的不精确和不确定的知识,并在系统与环境之间的交互过程中通过适当的学习能力对其进行调整。本文的主要贡献是开发一种由学习和重用人工操作员驱动的近似推理方法。在未知动态环境中处理事件离散情况的经验。提出了一种新的建模和学习人类操作员辅助系统中的情况识别知识的方法。通过学习人类操作员与环境互动的独家经验,可以对人类进行个性化的状态识别。个性化是由人类操作员在定义优先级和目标,事件的发生以及在情况说明中重要性的不同环境特征引起的。对于基于交互的知识结构建模,使用了模糊的情境-操作员建模方法,并通过应用特征选择过程进行了改进。相应的方法能够学习和表示新知识,以提高认知系统的个性化情况识别性能。在此,该方法是在模拟驾驶环境中应用并针对不同的测试驾驶员进行评估的。评估结果突出了所提出的方法在驾驶辅助系统中识别情况的能力和重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号