首页> 外文会议>2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management >Online learning for an individualized lane-change situation recognition system applied to driving assistance
【24h】

Online learning for an individualized lane-change situation recognition system applied to driving assistance

机译:在线学习适用于驾驶辅助的个性化车道变更情况识别系统

获取原文
获取原文并翻译 | 示例

摘要

Situation recognition is a significant part of supervision to advance human operator decision making. It is a process for identification of occurred situations as the result of a sequence of actions. Situation recognition process could be individualized for an assistance system by considering exclusive behaviors of human operators individually. Accordingly, the assistance system should be provided with an online learning process to explore new experiences by modeling and labeling the occurred situations and adapt the knowledge base. In this paper, an improved Case-Based Reasoning (CBR) approach is proposed and applied for lane-change driving situation recognition. The proposed CBR is able to model event-discrete situations using Situation-Operator Modeling (SOM) approach. In addition, human operator experiences are learned online and reused for situation recognition by integration of fuzzy logic. Additional processes need to be carried out in the proposed fuzzy-SOM based CBR to support online learning for data reduction and knowledge indexing. As an experiment, the proposed approach is implemented to recognize lane-change situations for a driving assistance system. According to fundamental evaluation results, the proposed approach is able to improve lane-change situations recognition performance for individual human operators.
机译:状况识别是监督的重要组成部分,可促进操作员的决策制定。这是识别由于一系列操作而发生的情况的过程。通过单独考虑操作员的排他性行为,可以针对援助系统对情况识别过程进行个性化设置。因此,应当为援助系统提供在线学习过程,以通过对发生的情况进行建模和标记并适应知识库来探索新的经验。本文提出了一种改进的基于案例的推理(CBR)方法,并将其应用于车道变更驾驶情况识别。所提出的CBR能够使用情境-操作员建模(SOM)方法对事件离散情境进行建模。此外,在线学习操作员的经验,并通过集成模糊逻辑将其重新用于情况识别。需要在提出的基于模糊SOM的CBR中执行其他过程,以支持在线学习以进行数据缩减和知识索引。作为实验,所提出的方法用于识别驾驶辅助系统的车道变更情况。根据基本评估结果,所提出的方法能够提高单个操作员对车道变化情况的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号