首页> 外文期刊>Engineering Applications of Artificial Intelligence >A framework for smart control using machine-learning modeling for processes with closed-loop control in Industry 4.0
【24h】

A framework for smart control using machine-learning modeling for processes with closed-loop control in Industry 4.0

机译:使用机器学习建模在工业4.0中使用机器学习建模的智能控制框架4.0

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection for processes with closed-loop control has become a widespread need in Industry 4.0 shop floors. A major challenge in monitoring such processes arises from the unknown dependencies among monitored observations, as these dependencies may change dynamically and with high frequency. Motivated by these considerations, a novel framework is proposed for self-adaptive smart control using adaptive machine-learning models. On the one hand, data driven machine-learning algorithms can deal with patterns and dependencies within the data that were not necessarily known in advance. On the other hand, the recurrent self-adaptive mechanism triggers the need to switch to a new type of machine-learning model to capture and reflect new dependencies among monitored observations resulting from changes in the process. The proposed framework and the associated case study described in this paper could serve as a firm basis for implementing self-adaptive smart process control in Industry 4.0 shop-floor processes with closed-loop control.
机译:在闭环控制的过程中检测到工业4.0商店楼层的普遍需要。监测此类进程的主要挑战是从监测观测中未知的依赖性产生的,因为这些依赖关系可以动态地改变,并且具有高频率。通过这些考虑因素,提出了一种使用自适应机器学习模型的自适应智能控制的新颖框架。一方面,数据驱动的机器学习算法可以处理不一定已知的数据内的模式和依赖性。另一方面,经常性自适应机制触发了切换到一种新型的机器学习模型,以捕获并反映受到过程中的变化导致的监视观测中的新依赖性。本文中描述的拟议框架和相关案例研究可以作为实施工业4.0车间工艺中的自适应智能过程控制的坚定依据,具有闭环控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号