首页> 外文期刊>Engineering Applications of Artificial Intelligence >Group reduced kernel extreme learning machine for fault diagnosis of aircraft engine
【24h】

Group reduced kernel extreme learning machine for fault diagnosis of aircraft engine

机译:集团减少核心极端学习机,用于飞机发动机故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The original kernel extreme learning machine (KELM) employs all training samples to construct hidden layer, thus avoiding the performance fluctuations caused by the ELM randomly assigning weights. However, excessive nodes will inevitably lead to structural redundancy, which hinders its application in systems with high realtime performance requirements but limited onboard storage and computing capacity. Considering the well interpretability of sparse learning, this study introduces the group sparse structure for KELM to resolve its limitation of structural redundancy. Specifically, the proposed novel method introduces a special norm to reformulate the dual optimization problem of KELM to realize group sparse structure in output weights. As a result, nodes with large weights can be selected as the significant nodes, while nodes with small weights will be regarded as the redundant nodes and neglected directly. In addition, we have also devised an alternating iterative optimization algorithm and deduced the complete proof of convergence to solve the non-smoothness optimization problem in proposed method. Then, the validity and feasibility of the proposed method are verified by extensive experiments on benchmark datasets. More importantly, tests of fault diagnosis for an aircraft engine show that the proposed approach can maintain the competitive recognition performance with much faster testing speed.
机译:原始内核极端学习机(KELM)采用所有培训样本来构建隐藏层,从而避免了由ELM随机分配权重引起的性能波动。但是,过量的节点将不可避免地导致结构冗余,这会阻碍其在具有高实时性能要求的系统中的应用,而是限制了板载存储和计算能力。考虑到稀疏学习的良好解释性,本研究介绍了Kelm的群稀疏结构,以解决其结构冗余的限制。具体地,所提出的新方法介绍了重构Kelm的双优化问题的特殊规范,以实现输出权重的群稀疏结构。结果,可以选择具有大权重的节点作为重要节点,而具有小权重的节点将被视为冗余节点并直接忽略。此外,我们还设计了交替的迭代优化算法,并推导了完整的收敛证明,以解决提出的方法的非平滑度优化问题。然后,通过对基准数据集的大量实验来验证所提出的方法的有效性和可行性。更重要的是,飞机发动机的故障诊断测试表明,所提出的方法可以以更快的测试速度保持竞争识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号