首页> 外文学位 >Diagnostic system configuration optimization and its application to aircraft engine fault diagnosis.
【24h】

Diagnostic system configuration optimization and its application to aircraft engine fault diagnosis.

机译:诊断系统配置优化及其在飞机发动机故障诊断中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Conventional fault diagnostic system design is typically performance-driven, which has several drawbacks. The most significant one is that the performance-driven design may result in an increase on overall maintenance costs. To address these problems, this thesis introduces a novel design philosophy for fault diagnostic systems. Under this new design philosophy, a fault diagnostic system design is casting as an optimization problem where the overall maintenance cost is the objective function and the diagnostic system configurations are the optimization variables.; The new design method consists of a cost model and optimization methods, among other critical components. The former allows for calculating the cost/benefit for a potential FDS design configuration, while the latter is the solver for finding the optimum solution. Realizing that solving the FDS configuration optimization is computationally prohibitively expensive, which may not be practical for typical real world problems, the thesis proposes a distributed optimization scheme that decomposes the FDS configuration optimization into a series of small-scaled sub-problems that can be solved independently in parallel. For validating and demonstrating the design details of the new design method, a real-world aircraft engine fault diagnostic system is designed using the proposed new design method.; Aircraft engines are operated at various points in flight regime (different altitudes and Mach numbers), which cause engine performance parameter changes. The flight regime induced engine performance parameter changes disturb the parameter patterns associated with engine faults, thus make the engine fault diagnosis notoriously difficult. This thesis tackles the flight regime issue using an innovative method, namely flight regime mapping. The proposed flight regime mapping essentially compensates for flight regime induced parameter changes, thus accentuates the engine condition related changes, by mapping the engine parameter values from actual flight regime to sea level static. The flight regime mapping results in an improved performance of AEFD systems.
机译:常规的故障诊断系统设计通常是由性能驱动的,这有几个缺点。最重要的是,以性能为导向的设计可能会导致总体维护成本的增加。针对这些问题,本文介绍了一种新颖的故障诊断系统设计理念。在这种新的设计理念下,故障诊断系统的设计被视为一个优化问题,其中总体维护成本是目标函数,而诊断系统配置是优化变量。新的设计方法包括成本模型和优化方法,以及其他关键要素。前者允许计算潜在FDS设计配置的成本/收益,而后者则是寻找最佳解决方案的解决方案。认识到解决FDS配置优化的计算量过高,对于典型的现实世界而言可能不切实际,因此提出了一种分布式优化方案,将FDS配置优化分解为一系列可以解决的小规模子问题独立并行。为了验证和演示新设计方法的设计细节,使用所提出的新设计方法设计了一个现实世界的飞机发动机故障诊断系统。飞机发动机在飞行状态的各个点(不同的高度和马赫数)下运行,这会导致发动机性能参数发生变化。飞行状态引起的发动机性能参数变化干扰了与发动机故障相关的参数模式,从而使发动机故障诊断异常困难。本文采用一种创新的方法,即飞行状态映射来解决飞行状态问题。通过将发动机参数值从实际飞行状态映射到静态海平面,所提出的飞行状态映射实质上补偿了飞行状态引起的参数变化,从而加重了与发动机状况有关的变化。飞行状态映射可提高AEFD系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号