首页> 外文期刊>Engineering Applications of Artificial Intelligence >Multi-objective ensembles of echo state networks and extreme learning machines for streamflow series forecasting
【24h】

Multi-objective ensembles of echo state networks and extreme learning machines for streamflow series forecasting

机译:回声状态网络的多目标集合和流流量系列预测的极限学习机

获取原文
获取原文并翻译 | 示例

摘要

Streamflow series forecasting composes a fundamental step in planning electric energy production for hydroelectric plants. In Brazil, such plants produce almost 70% of the total energy. Therefore, it is of great importance to improve the quality of streamflow series forecasting by investigating state-of-the-art time series forecasting algorithms. To this end, this work proposes the development of ensembles of unorganized machines, namely Extreme Learning Machines (ELMs) and Echo State Networks (ESNs). Two primary contributions are proposed: (1) a new training logic for ESNs that enables the application of bootstrap aggregation (bagging); and (2) the employment of multi-objective optimization to select and adjust the weights of the ensemble's base models, taking into account the trade-off between bias and variance. Experiments are conducted on streamflow series data from five real-world Brazilian hydroelectric plants, namely those in Sobradinho, Serra da Mesa, Jirau, Furnas and Agua Vermelha. The statistical results for four different prediction horizons (1, 3, 6, and 12 months ahead) indicate that the ensembles of unorganized machines achieve better results than autoregressive (AR) models in terms of the Nash-Sutcliffe model efficiency coefficient (NSE), root mean squared error (RMSE), coefficient of determination (R:), and RMSE-observations standard deviation ratio (RSR). In such results, the ensembles with ESNs and the multi-objective optimization design procedure achieve the best scores.
机译:Streamflow系列预测在水力发电厂规划电能生产方面构成了基本步骤。在巴西,这种植物产生了近70%的总能量。因此,通过调查最先进的时间序列预测算法,提高流流量系列预测的质量非常重要。为此,这项工作提出了未经组织机器的合奏,即极端学习机(ELM)和回声状态网络(ESN)的开发。提出了两个主要贡献:(1)用于ESN的新培训逻辑,该训练逻辑能够应用自动启动聚合(袋装); (2)考虑到偏差和方差之间的权衡,就雇用多目标优化选择和调整集合基础型号的权重。实验是在Firepflow系列数据上由五个现实世界巴西水力发电厂进行,即索布拉多州,Serra da Mesa,Jirau,Furnas和Agua Vermelha。四个不同预测视野(1,3,6和12个月的统计结果)表明未经组织机器的集合在NASH-SUTCLIFFE模型效率系数(NSE)方面,效果更好地实现了比自动增加(AR)模型更好的结果,根均匀误差(RMSE),确定系数(R :)和RMSE观察标准偏差比(RSR)。在这种结果中,具有ESN和多目标优化设计程序的合奏达到了最佳分数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号