首页> 外文期刊>Neurocomputing >Extreme learning machine ensemble model for time series forecasting boosted by PSO: Application to an electric consumption problem
【24h】

Extreme learning machine ensemble model for time series forecasting boosted by PSO: Application to an electric consumption problem

机译:极端学习机组集合模型用于时间序列预测PSO提升:应用于电力消费问题

获取原文
获取原文并翻译 | 示例

摘要

Ensemble Model is a tool that has attracted attention due to its capability to improve the outcome performance of emerging techniques to solve the modelling and classifying problem. However, the feasibility of applying intelligent algorithms to build the Ensemble Model presents a challenge of its own. In this work, an Extreme Learning Machine ensemble is applied to the Time Series modelling problem. We develop a thorough study of the models that will be candidates to compose the ensemble, obtaining statistical results of optimal topologies to solve each Time Series problem. The proposed method for the ensemble is the weighted averaging method, where the parameters (weights) are tuned with the Particle Swarm Optimization algorithm. Lastly, the ensemble is tested first in the well known Santa Fe Time Series Competition benchmark. Given the obtained satisfactory results, the ensemble is secondly tested in a real problem of Spain's electric consumption forecasting. It is demonstrated that the PSO is a suitable algorithm to optimize Extreme Learning Machine ensemble and that the proposed strategy can obtain good results in both Time Series problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:Ensemble Model是一种在改善新兴技术的结果表现,以解决建模和分类问题,引起了引起的工具。然而,应用智能算法构建合奏模式的可行性提出了自己的挑战。在这项工作中,将极端的学习机组合奏应用于时间序列建模问题。我们开发了对候选集合的候选模式的彻底研究,获得最佳拓扑的统计结果来解决每个时间序列问题。所提出的集合方法是加权平均方法,其中参数(重量)与粒子群优化算法一起调整。最后,在众所周知的Santa Fe Time竞赛基准测试中首先测试了该集合。鉴于获得的令人满意的结果,在西班牙电力消耗预测的真正问题中,该集合是测试。据证明PSO是优化极端学习机组的合适算法,并且所提出的策略可以在两个时间序列问题中获得良好的结果。 (c)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号