首页> 外文期刊>Engineering Applications of Artificial Intelligence >Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems
【24h】

Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems

机译:分数秩序的CUCKOO搜索算法,用于分数秩序的参数识别,混沌与超混沌金融系统

获取原文
获取原文并翻译 | 示例

摘要

Identifying the parameters of the chaos phenomena in the economic-financial systems is a critical issue to control and avoid the financial crises and bogging the market down. Therefore, in this paper, an efficient and reliable optimization algorithm is developed to identify the corresponding parameters of that chaotic dynamical behavior in the fractional-order chaotic, chaotic with noise, and hyper-chaotic financial systems. The introduced algorithm is a cooperation among the fractional calculus (FC) perspective and the basic cuckoo search algorithm to enhance the stochastic cuckoo's walk via considering the cuckoo's earlier behaviors from memory. The developed fractional-order cuckoo search (FO-CS) is validated with twenty-eight functions of CEC2017 with different dimensions. Several measures and non-parametric statistical tests are presented to demonstrate the superiority of the introduced algorithm while compared with the CS and the state-of-the-art techniques. The results show that merging of FC properties magnifies CS's efficiency, convergence speed, and robustness against the complexity of the considered CEC benchmarks suite and the non-linearity of the fractional-order chaotic, chaotic with noise, and hyper-chaotic financial systems.
机译:识别经济金融系统中混沌现象的参数是控制和避免金融危机并丢弃市场的重要问题。因此,在本文中,开发了一种有效且可靠的优化算法,以识别分数秩序混乱,混沌与噪声和超混沌金融系统中的混沌动态行为的相应参数。引入的算法是分数微积分(FC)透视和基本杜鹃搜索算法的合作,通过考虑杜鹃从内存中的行为来增强随机杜鹃的步行。发达的分数级探索(FO-CS)被验证,CEC2017的二十八个功能验证,具有不同的尺寸。提出了几种措施和非参数统计测试以展示引入算法的优越性,而与CS和最先进的技术相比。结果表明,FC属性的合并将CS的效率,收敛速度和稳健性倍换,以防止所考虑的CEC基准套件的复杂性和分数顺序混沌,混沌与噪声的非线性,以及超混沌金融系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号