首页> 外文期刊>Engineering Applications of Artificial Intelligence >A machine learning approach to modelling escalator demand response
【24h】

A machine learning approach to modelling escalator demand response

机译:一种用于自动扶梯需求响应建模的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

This article relates to the topic of the escalator demand response potential. Previous studies mapped escalators as an unrealized potential for additional demand response. The decrease of the nominal speed is the proposed method of reducing the power consumption of an escalator that comes at the cost of passenger travel time and queuing. This work proposes a solution to a problem of selecting appropriate escalators from a large pool to accommodate the target of power curtailment at a minimum cost and highlights the escalator features that constitute the best demand response candidates. The paper compares four methods which differ in calculation speed and accuracy. The primal solution is the earlier developed and enhanced simulation-based model. The random forest and the neural network models provide a solution trained on the output of the simulation-based model aiming to enhance the calculation speed. Finally, all of the developed solutions are compared to the random selection of escalators. The comparison of the proposed statistical approaches shows that the random forest outperforms the neural networks with a maximum error in the prediction of the overall costs in the range of 10.5% of the simulation-based model solution, while the neural network solution lies within 10%-58%, depending on the targeted value of the power reduction. Statistical approaches enable performing predictions for different times of the day and for new escalator populations without the need for time-demanding simulations. Comparison to the random selection of escalators demonstrates that the proposed models generally outperform the random selection at least seven-fold.
机译:本文涉及自动扶梯需求响应潜力的主题。先前的研究将自动扶梯映射为额外需求响应的未实现潜力。降低标称速度是减少自动扶梯功率消耗的建议方法,其以乘客出行时间和排队为代价。这项工作提出了一个解决方案,该问题是从一个较大的池中选择合适的自动扶梯,以最小的成本满足电力削减的目标,并强调了构成最佳需求响应候选者的自动扶梯功能。本文比较了四种计算速度和准确性不同的方法。首要的解决方案是较早开发和增强的基于仿真的模型。随机森林和神经网络模型提供了基于模拟模型的输出训练的解决方案,旨在提高计算速度。最后,将所有已开发的解决方案与自动扶梯的随机选择进行比较。所提出的统计方法的比较表明,在基于仿真的模型解决方案的总成本的10.5%范围内,随机森林优于神经网络并具有最大的预测误差,而神经网络解决方案的误差在10%以内-58%,取决于功率降低的目标值。统计方法使您能够针对一天中的不同时间和新的自动扶梯机群执行预测,而无需进行费时的模拟。与自动扶梯的随机选择的比较表明,所提出的模型通常比随机选择的性能好至少七倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号