首页> 外文期刊>Applied Energy >Demand response algorithms for smart-grid ready residential buildings using machine learning models
【24h】

Demand response algorithms for smart-grid ready residential buildings using machine learning models

机译:使用机器学习模型的智能电网就绪住宅建筑的需求响应算法

获取原文
获取原文并翻译 | 示例

摘要

This paper assesses the performance of control algorithms for the implementation of demand response strategies in the residential sector. A typical house, representing the most common building category in Ireland, was fully instrumented and utilised as a test-bed. A calibrated building simulation model was developed and used to assess the effectiveness of demand response strategies under different time-of-use electricity tariffs in conjunction with zone thermal control. Two demand response algorithms, one based on a rule-based approach, the other based on a predictive-based (machine learning) approach, were deployed for control of an integrated heat pump and thermal storage system. The two algorithms were evaluated using a common demand response price scheme. Compared to a baseline reference scenario, the following reductions were observed: electricity end-use expenditure (20.5% rule-based and 41.8% predictive algorithm), utility generation cost (18.8% rule-based and 39% predictive algorithm), carbon emissions (20.8% rule-based and 37.9% predictive algorithm).
机译:本文评估了控制算法在住宅部门中实施需求响应策略的性能。代表爱尔兰最常见建筑类别的典型房屋经过了全面的仪器测试,并用作测试台。开发了一个经过校准的建筑模拟模型,并结合区域热控制使用该模型来评估不同使用时间的电价下需求响应策略的有效性。部署了两种需求响应算法,一种基于规则的方法,另一种基于基于预测的(机器学习)方法,用于控制集成的热泵和储热系统。使用通用需求响应价格方案评估了这两种算法。与基准参考情景相比,观察到以下减少:电力最终用途支出(基于规则的20.5%和预测算法的41.8%),公用事业发电成本(基于规则的18.8%和预测算法的38.8%),碳排放量(基于规则的20.8%和预测算法的37.9%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号