首页> 外文期刊>Engineering Applications of Artificial Intelligence >A size-transferring radial basis function network for aero-engine thrust estimation
【24h】

A size-transferring radial basis function network for aero-engine thrust estimation

机译:用于航空发动机推力估算的尺寸传递径向基函数网络

获取原文
获取原文并翻译 | 示例

摘要

Thrust regulation plays an important role in the aero-engine control. However, the thrust is unmeasurable in flight which poses a great challenge to the thrust control. Traditional thrust control methods are implemented by controlling the parameters tightly related to thrust and reserve enough safety margins to protect the engine. To realize the direct thrust control, the methods to estimate thrust is urgently required. In this paper, a new algorithm based on particle swarm optimization (PSO) and radial basis function neural network (RBFNN) is proposed to estimate the thrust. A strategy named "size-transferring" is developed to select and adjust the network size of the RBFNN. Besides, to solve the high-dimensional optimization problem during the estimation, a new approach based on the PSO algorithm is also illustrated. The successful application of the proposed algorithm to the aero-engine thrust estimation problem demonstrates its effectiveness.
机译:推力调节在航空发动机控制中起着重要作用。然而,在飞行中推力是无法测量的,这对推力控制提出了巨大的挑战。传统的推力控制方法是通过控制与推力紧密相关的参数来实现的,并保留足够的安全余量来保护发动机。为了实现直接推力控制,迫切需要估算推力的方法。提出了一种基于粒子群算法(PSO)和径向基函数神经网络(RBFNN)的推力估计新算法。开发了一种名为“大小转移”的策略,以选择和调整RBFNN的网络大小。此外,为了解决估计过程中的高维优化问题,还提出了一种基于PSO算法的新方法。该算法成功应用于航空发动机推力估计问题,证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号