首页> 外文OA文献 >Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification
【2h】

Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification

机译:q-高斯径向基函数神经网络的混合算法二元分类参数估计

摘要

A classification problem is a decision-making task that many researchers have studied. A number of techniques have been proposed to perform binary classification. Neural networks are one of the artificial intelligence techniques that has had the most successful results when applied to this problem. Our proposal is the use of q-Gaussian Radial Basis Function Neural Networks (q-Gaussian RBFNNs). This basis function includes a supplementary degree of freedom in order to adapt the model to the distribution of data. A Hybrid Algorithm (HA) is used to search for a suitable architecture for the q-Gaussian RBFNN. The use of this type of more flexible kernel could greatly improve the discriminative power of RBFNNs. In order to test performance, the RBFNN with the q-Gaussian basis functions is compared to RBFNNs with Gaussian, Cauchy and Inverse Multiquadratic RBFs, and to other recent neural networks approaches. An experimental study is presented on 11 binary-classification datasets taken from the UCI repository. Moreover, aerial imagery taken in mid-May, mid-June and mid-July was used to evaluate the potential of the methodology proposed for discriminating Ridolfia segetum patches (one of the most dominant and harmful weeds in sunflower crops) in two naturally infested fields in southern Spain. © 2011 Elsevier B.V..
机译:分类问题是许多研究人员研究的决策任务。已经提出了许多技术来执行二进制分类。神经网络是应用于此问题的最成功结果的人工智能技术之一。我们的建议是使用q-高斯径向基函数神经网络(q-Gaussian RBFNNs)。该基本功能包括补充的自由度,以使模型适应数据的分布。混合算法(HA)用于为q-Gaussian RBFNN搜索合适的体系结构。使用这种类型的更灵活的内核可以大大提高RBFNN的判别能力。为了测试性能,将具有q-高斯基函数的RBFNN与具有高斯,柯西和逆多二次RBF的RBFNN以及其他最近的神经网络方法进行了比较。对从UCI存储库中提取的11个二进制分类数据集进行了实验研究。此外,在5月中旬,6月中旬和7月中旬拍摄的航空影像被用于评估提议的方法在两个自然侵染的田地中鉴别Ridolfia segetum斑块(向日葵作物中最主要和最有害的杂草之一)的潜力。在西班牙南部。 ©2011 Elsevier B.V.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号