首页> 外文期刊>Engineering Applications of Artificial Intelligence >Unsupervised feature selection via graph matrix learning and the low-dimensional space learning for classification
【24h】

Unsupervised feature selection via graph matrix learning and the low-dimensional space learning for classification

机译:通过图矩阵学习和低维空间学习进行无监督特征分类

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised feature selection is a powerful tool to select a subset of features for effective representation of high-dimensional data. In this paper, we proposes a novel unsupervised feature selection method via the graph matrix learning and the low-dimensional space learning to obtain their individually optimized result. Furthermore, the global and local correlation of features have been taken into consideration through the low-rank constraint and the feature-level representation property on the graph matrix. Experimental analysis on 15 benchmark datasets verified that our proposed method outperformed the state-of-the-art feature selection methods in terms of classification performance.
机译:无监督特征选择是一种功能强大的工具,用于选择特征子集以有效表示高维数据。在本文中,我们通过图矩阵学习和低维空间学习提出了一种新颖的无监督特征选择方法,以获得它们各自的优化结果。此外,通过图矩阵上的低秩约束和特征级别表示属性,已经考虑了特征的全局和局部相关性。对15个基准数据集进行的实验分析证明,我们提出的方法在分类性能方面优于最新的特征选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号