首页> 外文期刊>Neurocomputing >Subspace learning for unsupervised feature selection via adaptive structure learning and rank approximation
【24h】

Subspace learning for unsupervised feature selection via adaptive structure learning and rank approximation

机译:通过自适应结构学习和排名近似为无监督特征选择的子空间学习

获取原文
获取原文并翻译 | 示例

摘要

Traditional unsupervised feature selection methods usually construct a fixed similarity matrix. This matrix is sensitive to noise and becomes unreliable, which affects the performance of feature selection. The researches have shown that both the global reconstruction information and local structure information are important for feature selection. To solve the above problem effectively and make use of the global and local information of data simultaneously, a novel algorithm is proposed in this paper, called subspace learning for unsupervised feature selection via adaptive structure learning and rank approximation (SLASR). Specifically, SLASR learns the manifold structure adaptively, thus the preserved local geometric structure can be more accurate and more robust to noise. As a result, the learning of the similarity matrix and the low-dimensional embedding is completed in one step, which improves the effect of feature selection. Meanwhile, SLASR adopts the matrix factorization subspace learning framework. By minimizing the reconstruction error of subspace learning residual matrix, the global reconstruction information of data is preserved. Then, to guarantee more accurate manifold structure of the similarity matrix, a rank constraint is used to constrain the Laplacian matrix. Additionally, the l(2,1/2) regularization term is used to constrain the projection matrix to select the most sparse and robust features. Experimental results on twelve benchmark datasets show that SLASR is superior to the six comparison algorithms from the literature. (C) 2020 Published by Elsevier B.V.
机译:传统的无监督特征选择方法通常构造固定的相似矩阵。该矩阵对噪声敏感,并且变得不可靠,这会影响特征选择的性能。研究表明,全局重建信息和本地结构信息都对于特征选择很重要。为了有效地解决上述问题并同时利用数据的全局和局部信息,本文提出了一种新颖的算法,称为子空间学习,通过自适应结构学习和秩近似(SLASR)进行无监督的特征选择。具体地,SLASR自适应地学习歧管结构,因此保存的局部几何结构可以更准确,更鲁棒地噪声。结果,在一个步骤中完成了相似性矩阵和低维嵌入的学习,这提高了特征选择的效果。同时,SLASR采用矩阵分解子空间学习框架。通过最小化子空间学习剩余矩阵的重建误差,保留了全局重建信息。然后,为了保证相似性矩阵的更准确的歧管结构,使用秩约束来限制拉普拉斯矩阵。另外,L(2,1 / 2)正则化术语用于限制投影矩阵以选择最稀疏和鲁棒的功能。十二个基准数据集的实验结果表明,SLASR优于文献中的六种比较算法。 (c)2020由elsevier b.v发布。

著录项

  • 来源
    《Neurocomputing》 |2020年第6期|72-84|共13页
  • 作者单位

    Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Shaanxi Peoples R China;

    Xidian Univ Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Subspace learning; Adaptive structure learning; Rank constraint; Projection matrix; Feature selection;

    机译:子空间学习;自适应结构学习;秩约束;投影矩阵;特征选择;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号