首页> 外文期刊>Engineering Applications of Artificial Intelligence >Unsupervised feature selection based on adaptive similarity learning and subspace clustering
【24h】

Unsupervised feature selection based on adaptive similarity learning and subspace clustering

机译:基于自适应相似性学习和子空间聚类的无监督功能选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection methods have an important role on the readability of data and the reduction of complexity of learning algorithms. In recent years, a variety of efforts are investigated on feature selection problems based on unsupervised viewpoint due to the laborious labeling task on large datasets. In this paper, we propose a novel approach on unsupervised feature selection initiated from the subspace clustering to preserve the similarities by representation learning of low dimensional subspaces among the samples. A self-expressive model is employed to implicitly learn the cluster similarities in an adaptive manner. The proposed method not only maintains the sample similarities through subspace clustering, but it also considers the underlying structure of data based on a regularized regression model. In line with the convergence analysis of the proposed method, the experimental results on benchmark datasets demonstrate the effectiveness of our approach as compared with the state-of-the-art methods.
机译:特征选择方法对数据的可读性以及学习算法的复杂性降低具有重要作用。近年来,由于大型数据集上的艰苦标记任务,根据无监督的观点对特征选择问题进行了各种努力。在本文中,我们提出了一种关于从子空间聚类发起的无监督特征选择的新方法,以通过样本中的低维子空间的表示学习来保护相似性。采用自我表达模型以适应方式隐含地学习集群相似之处。所提出的方法不仅通过子空间群集维护样本相似性,而且还认为基于正则化回归模型来考虑数据的基础结构。根据所提出的方法的收敛分析,基准数据集的实验结果表明了与最先进的方法相比我们的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号