首页> 外文期刊>Engineering analysis with boundary elements >Element-subdivision method for evaluation of singular integrals over narrow strip boundary elements of super thin and slender structures
【24h】

Element-subdivision method for evaluation of singular integrals over narrow strip boundary elements of super thin and slender structures

机译:超细细长结构窄条边界元上奇异积分的单元细分方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, based on the numerical investigation of singular integrals over narrow strip boundary elements stemming from BEM analysis of thin and slender structures with different numbers of Gauss points, an efficient method is proposed for evaluating the narrow strip singular boundary integrals using an adaptive unequal interval element-subdivision method in the intrinsic parameter plane. In this method, the size of the sub-element closest to the singular point is determined first in terms of the orders of the shape functions along two intrinsic coordinate directions. Then, the sizes of other sub-elements are computed by employing a criterion proposed by Gao and Davies for evaluating nearly singular integrals in terms of an allowed number of Gauss points and the distance from the source point to the sub-element. The features of the proposed method are that the computational accuracy of various orders of singular integrals is controlled by the upper bound of the error of Gauss quadrature, rather than through artificially giving the size of the sub-elements and number of Gauss points, and because of using the unequal interval element-subdivision method, the number of required sub-elements is not large even for an element with high aspect ratio, usually less than 10 for a plate with aspect ratio of 100:1. A number of numerical examples for plates and shells with different aspect ratios are analyzed for various orders of integrals to demonstrate the efficiency of the proposed method.
机译:本文基于对具有不同高斯点数的薄结构和细长结构的边界元分析,对窄带边界元上的奇异积分进行数值研究,提出了一种利用自适应不等式评估窄带奇异边界积分的有效方法内在参数平面中的区间元素细分方法。在这种方法中,首先根据形状函数沿两个固有坐标方向的阶数确定最接近奇异点的子元素的大小。然后,通过采用由Gao和Davies提出的准则,根据允许的高斯点数和从源点到子元素的距离来评估近似奇异的积分,来计算其他子元素的大小。该方法的特点是,各阶奇异积分的计算精度由高斯正交误差的上限控制,而不是通过人工给出子元素的大小和高斯点的数量来控制,并且使用不等间隔元素细分方法,即使对于高纵横比的元素,所需的子元素的数量也不大,对于纵横比为100:1的平板,通常少于10。分析了不同长宽比的板和壳的许多数值示例,以求积分的各种阶次,以证明所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号