首页> 外文期刊>Engineering analysis with boundary elements >Numerical solution of two-dimensional nonlinear sine-Gordon equation using localized method of approximate particular solutions
【24h】

Numerical solution of two-dimensional nonlinear sine-Gordon equation using localized method of approximate particular solutions

机译:二维非线性正弦-Gordon方程数值解的局部近似解

获取原文
获取原文并翻译 | 示例

摘要

Sine-Gordon equation is one of the most famous nonlinear hyperbolic partial differential equations, it arises in many science and engineering fields. In the present work, we consider the numerical solution of two dimensional sine-Gordon equation using localized method of approximate particular solutions (LMAPS), in this technique, the method of approximate particular solutions (MAPS) occurs on some local domains, that greatly reduces the size of the collection matrix, and by combining the conditional positive radial basis function (RBF) generalized thin plate splines (GTPS) with additional low-order polynomial basis to avoid selecting shape parameters during localization. This method is effective compared with other existing methods and since this method is really meshless, it can be used to solve the nonlinear model with complicated computational domains. Several numerical examples are given to demonstrate the ability and accuracy of the present approach for solving nonlinear sine-Gordon equation.
机译:Sine-Gordon方程是最著名的非线性双曲偏微分方程之一,它出现在许多科学和工程领域。在本工作中,我们使用局部近似近似解(LMAPS)的方法考虑二维正弦-Gordon方程的数值解,在该技术中,局部局部解出现了近似特定解的方法(MAPS)集合矩阵的大小,并通过结合条件正径向基函数(RBF)广义薄板样条(GTPS)与其他低阶多项式基,以避免在定位过程中选择形状参数。与其他现有方法相比,该方法有效,并且由于该方法实际上是无网格的,因此可用于求解具有复杂计算域的非线性模型。给出了几个数值例子,以证明本方法求解非线性正弦-戈登方程的能力和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号