首页> 外文期刊>Engineering analysis with boundary elements >Numerical solutions of two-dimensional flow fields by using the localized method of approximate particular solutions
【24h】

Numerical solutions of two-dimensional flow fields by using the localized method of approximate particular solutions

机译:二维流场数值解的近似局部解局部化方法

获取原文
获取原文并翻译 | 示例

摘要

A combination of the localized method of approximate particular solutions (LMAPS), the implicit Euler method and the Newton's method is adopted in this paper for transient solutions of two-dimensional velocity-vorticity formulation of the Navier-Stokes equations. The LMAPS, which is truly free from time-consuming mesh generation and numerical quadrature, and the implicit Euler method are, respectively, used for spatial and temporal discretizations of the velocity-vorticity formulation. Using the approximations of particular solutions in every local domain, the derivatives at nodes with respect to space coordinates via the LMAPS can be approximated by linear summations of nearby function values. After the discretizations for space and time derivatives, a system of nonlinear algebraic equations will be yielded at every time step and then the Newton's method is used for efficiently analyzing these systems. Three numerical examples are provided to validate the accuracy and the simplicity of the proposed scheme and the numerical results are compared well with other numerical and analytical solutions. Besides, the numerical solutions, acquired by using different numbers of total nodes, different numbers of nodes in sub-domain, different shape parameters and different Reynolds numbers, are provided to show the merits of the proposed meshless scheme.
机译:针对Navier-Stokes方程的二维速度涡度公式,本文采用了局部近似解(LMAPS),隐式欧拉法和牛顿法相结合的方法。真正没有费时的网格生成和数值正交的LMAPS和隐式Euler方法分别用于速度涡度公式的空间和时间离散化。使用每个局部域中特定解的近似值,可以通过附近函数值的线性求和来近似通过LMAPS进行的空间坐标在节点上的导数。在对时空导数进行离散化之后,将在每个时间步长生成一个非线性代数方程组,然后使用牛顿法对这些系统进行有效分析。提供了三个数值示例,以验证所提方案的准确性和简便性,并将数值结果与其他数值和解析解进行了比较。此外,提供了通过使用不同总数的节点,不同子域中的节点数量,不同形状参数和不同雷诺数获得的数值解,以展示所提出的无网格方案的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号