首页> 外文期刊>Engineering analysis with boundary elements >Weighted least-squares collocation methods for elliptic PDEs with mixed boundary conditions
【24h】

Weighted least-squares collocation methods for elliptic PDEs with mixed boundary conditions

机译:混合边界条件下椭圆型偏微分方程的加权最小二乘配置方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we apply kernel-based collocation methods to elliptic problems with mixed boundary conditions. We propose some weighted least-squares formulations with different weights for the Dirichlet and Neumann boundary collocation terms. Besides fill distance of discrete sets, our weights also depend on other three factors: the proportion of measures of the Dirichlet and Neumann boundaries, dimensionless volume ratios of the boundary and domain, and kernel smoothness. We determine the dependencies of these terms in weights by different numerical tests. Our least-squares formulations can be proved convergent in 112(D). Numerical experiments for two dimensional examples show that we can obtain convergent solutions for kernel smoothness m e {3, 4, 5}in the irregular domains, circle domain, and rectangle thin domain. We also apply our formulations to three dimensional cases and get desired convergent results for m is an element of{4, 5, 6, 7} in cubic, sphere and torus domain under different boundary conditions.
机译:在本文中,我们将基于核的搭配方法应用于具有混合边界条件的椭圆问题。我们为Dirichlet和Neumann边界搭配项提出了一些具有不同权重的加权最小二乘公式。除了离散集的填充距离,我们的权重还取决于其他三个因素:狄利克雷和诺伊曼边界的度量比例,边界和域的无量纲体积比以及核光滑度。我们通过不同的数值测试确定这些项在权重中的依赖性。我们的最小二乘公式可以证明在112(D)中是收敛的。二维示例的数值实验表明,我们可以在不规则域,圆形域和矩形薄域中获得{3,4,5}的核光滑度的收敛解。我们还将我们的公式应用于三维情况,并获得期望的收敛结果,因为m是在不同边界条件下在立方,球面和环面域中{4,5,6,7}的元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号